

Econometrics 120A: Discussion Section

Week 5

Natalia Madrid & Lapo Bini

Department of Economics

Chapter 4: Two Random Variables

Joint Probability Distribution

The Joint Probability Distribution represents the probability of two events, *X* and *Y*, occurring simultaneously.

Discrete Bivariate Random Variables:

 \Rightarrow The joint probability mass function (PMF) is given by:

$$P(X = x, Y = y) = p(x, y)$$

⇒ Properties:

$$\sum_{x}\sum_{y}P(X=x,Y=y)=1$$

Continuous Bivariate Random Variables:

 \Rightarrow The joint probability density function (PDF) is represented as:

$$P(a < X < b, c < Y < d) = \int_{a}^{b} \int_{c}^{d} p(x, y) \, dy \, dx$$

⇒ Properties:

$$\iint_{-\infty}^{\infty} p(x, y) \, dy \, dx = 1$$

Marginal Distribution

A marginal distribution captures the probabilities associated with one variable alone, without considering the dependency on other variables.

Discrete Bivariate Random Variables:

⇒ The marginal distribution of Y is obtained by summing the joint probabilities over all values of X.

$$P(Y = y) = \sum_{x} P(X = x, Y = y)$$

Continuous Bivariate Random Variables:

⇒ The marginal distribution of Y is obtained by summing the joint probabilities over all values of X.

$$P(Y=y) = \int_{-\infty}^{\infty} p(x,y) dx$$

Independence

Independence means knowing the value of one variable provides no information about the other.

For two independent random variables X and Y :

 \Rightarrow The joint probability distribution is equal to the product of the marginals:

 $P(X,Y) = P(X) \cdot P(Y)$

 \Rightarrow The **variance** of their sum is the sum of their variances (covariance is 0):

Var(X + Y) = Var(X) + Var(Y)

⇒ The **expected value** of the product of *X* and *Y* can be calculated simply as the product of their individual expected values:

$$E[XY] = E[X] \cdot E[Y]$$

⇒ The **conditional expectation** of one variable given the other is simply the expectation of that variable:

$$E[X|Y] = E[X]$$
 and $E[Y|X] = E[Y]$

Conditional probability distribution

A conditional probability distribution describes the probability of a random variable X given that another random variable Y has taken on specific values. It is denoted as P(Y|X) and is defined as P(Y = y|X = x)

Bayes' Rule allows us to update our beliefs about X given new evidence Y.

$$P(X = x | Y = y) = \frac{P(Y = y | X = x) \cdot P(X = x)}{P(Y = y)}$$

If *Y* is a random variable and *X* is another random variable, the **expected value** of *Y* given *X* is defined as:

 $E[Y|X] = \sum_{y} y \cdot P(Y = y|X)$ (for discrete random variables)

 $E[Y|X] = \int_{-\infty}^{\infty} y \cdot p(y|x) \, dy \quad \text{(for continuous random variables)}$

Covariance and independence

Covariance measures the degree to which two random variables change together. Specifically, it is defined as:

Cov(X, Y) = E[(X - E[X])(Y - E[Y])]

Independence Implies Zero Covariance: If *X* and *Y* are independent random variables, then their covariance is zero:

 \Rightarrow Due to independence, we have:

 $E[XY] = E[X] \cdot E[Y]$

 \Rightarrow Therefore, the covariance becomes:

However, the converse is not necessarily true: Zero Covariance Does Not Imply Independence

Properties expectation and variance

The **expectation** of a linear combination of variables is the linear combination of their expectations.

E[aX + bY] = aE[X] + bE[Y]

For two variables, their combined **variance** accounts for individual variances and their covariance.

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Suppose the following table represents the joint distribution of two variables: **Wage (W)** and **Education Level (E)** in a small economy. Here, *W* represents an individual's income category (low, medium, high), and *E* represents their education level (high school, bachelor's, master's).

W \E	High School	Bachelor's	Master's
Low	0.10	0.05	0.02
Medium	0.15	0.20	0.08
High	0.05	0.10	0.25

- (a) Are Wage and Education Level independent? Justify your answer by calculating the marginal distributions and checking if the product of marginals equals the joint probabilities.
- (b) Calculate the conditional distribution of Wage given Education Level = Bachelor's. Is this the same as the marginal distribution for Wage? Is this consistent with your answer in the previous question?

W \E	High School	Bachelor's	Master's
Low	0.10	0.05	0.02
Medium	0.15	0.20	0.08
High	0.05	0.10	0.25

(a) Are Wage and Education Level independent? Justify your answer by calculating the marginal distributions and checking if the product of marginals equals the joint probabilities.

W \E	High School	Bachelor's	Master's
Low	0.10	0.05	0.02
Medium	0.15	0.20	0.08
High	0.05	0.10	0.25

(b) Calculate the conditional distribution of Wage given Education Level = Bachelor's. Is this the same as the marginal distribution for Wage? Is this consistent with your answer in the previous question?

Suppose we have the following joint distribution for two economic variables: *Employment Status (X)* and *Industry (Y)*. The variable X represents employment status, where:

- X = 0 denotes "Unemployed"
- X = 1 denotes "Employed in a Traditional Job"
- X = 2 denotes "Self-Employed"

The variable Y represents industry type, where:

Y = 0 denotes "Agriculture"

Y = 1 denotes "Finance"

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

Using this table, answer the following questions:

- (a) Verify that this is indeed a probability distribution.
- (b) What are the marginal distributions for X and Y?
- (c) What are the means of X and Y?
- (d) What is the conditional distribution of X given Y = 0? Also for X given Y = 1.
- (e) What do you notice about this result? Does this show that *X* and *Y* are independent?
- (f) How does the conditional mean of X depend on Y?
- (g) Does the result in (f) indicate if the random variables are independent? Be clear.

Marginal Distribution

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(a) Verify that this is indeed a probability distribution.

Marginal Distribution

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(b) What are the marginal distributions for X and Y?

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(c) What are the means of X and Y?

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(d) What is the conditional distribution of X given Y = 0? Also for X given Y = 1.

Chapter 4: Two Random Variables

Kind of PS3 Question 3

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(e) What do you notice about this result? Does this show that *X* and *Y* are independent?

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(f) How does the conditional mean of X depend on Y?

The joint probabilities for these variables are given in the table below:

$X \setminus Y$	0 (Agriculture)	1 (Finance)
0 (Unemployed)	0.05	0.15
1 (Employed)	0.20	0.25
2 (Self-employed)	0.10	0.25

(g) Does the result in (f) indicate if the random variables are independent? Be clear.

A random variable X has mean E[X] = 20 and variance of 25; a second random variable Y has mean E[Y] = 30 and variance of 55.

- (a) What is the mean and variance of X + Y assuming they are independent?
- (b) What is the mean and variance of X + Y if they gave correlation $\rho = 0.5$?

Chapter 5: Random Sampling

Big Picture

 \Rightarrow We started from a Bernoulli Random Variable

$$X_i = \begin{cases} 0 & (\text{not cured}) & p \\ 1 & (\text{cured}) & (1-p) \end{cases}$$

- \Rightarrow Standard Assumption: X_1, \ldots, X_n independent.
- ⇒ We define the random variable $S_n = \sum_{i=1}^n X_i$ with distribution $S_n \sim Binomial(n, p)$
- \Rightarrow Now we are interested in the distribution of $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

Moments of Sample Mean

⇒ We can easily compute the expected value of the sample mean:

 $E[\overline{X}_n] =$

 \Rightarrow We can compute the variance of the sample mean as well:

 $Var(\bar{X}_n) =$

Central Limit Theorem

 \Rightarrow If $\{X_1, \ldots, X_n\}$ are a VSRS with mean μ and variance σ^2 then

$$\bar{X}_n \stackrel{a}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

- $\Rightarrow \text{ Example: if we consider the Bernoulli random variables introduced before we have } \bar{X}_n \stackrel{a}{\sim} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$
- ⇒ Given Y ~ $N(\mu, \sigma^2)$, if we define Z = aY + b by properties of expectation and variance we obtain:

$$Z = aY + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

 \Rightarrow $n\bar{X}_n \stackrel{a}{\sim} \mathcal{N}(np, np(1-p))$ but we know that $n\bar{X}_n = S_n \sim Binomial(n, p)$. Is there something wrong?

Central Limit Theorem

- ⇒ Finite Sample: When dealing with a finite sample, we cannot rely on the Central Limit Theorem (CLT) to perfectly approximate the distribution of the sample mean as normal, since the CLT only applies asymptotically (as $n \to \infty$).
- ⇒ Asymptotic: As *n* becomes very large, the CLT approximation improves, and the sample mean \overline{X}_n behaves increasingly like a normal distribution. However, this is an approximation that holds in the limit, meaning it is not exact for finite samples.
- ⇒ For the **Bernoulli random variables** with mean *p* and variance p(1 p), the random variable $n \overline{X}_n$ is approximated as follows according to the CLT:

$$n \bar{X}_n \stackrel{a}{\sim} \mathcal{N}(np, np(1-p))$$

However, for a finite sample size, the actual distribution of $n \overline{X}_n = \sum_{i=1}^n X_i$ is binomial (not normal), and the normal distribution is only an approximation, which may not hold well for small *n*.