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1. Introduction to Potential Outcomes

2. Randomized Control Trials

3. Some Unpleasant Linear Regression Arithmetic
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Some Notation

• We want to express a causal statement, i.e. a comparison between two
states of the world.

• An individual i could receive a treatment or not. We will denote with xi
the treatment status of the i th unit: xi = {treated}.

• Observable outcome for each individual: yi = x1yi(1) + (1� xi)yi(0).
Objects of interest:

⌧ATE ⌘ E[yi(1)� yi(0)]
⌧ATT ⌘ E[yi(1)� yi(0)|xi = 1]
⌧ATU ⌘ E[yi(1)� yi(0)|xi = 0]

• Key concept: identification vs. estimation.
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Road to Identification (1/2)

• Claim: ⌧ATE = ⇡ ⌧ATT + (1� ⇡)⌧ATU
Proof

• We observe E[yi(1)|xi = 1] and E[yi(0)|xi = 0]. Can we estimate the
Average Treatment Effect as:

⌧ATE =
⇣
E[yi(1)|xi = 1]� E[yi(0)|xi = 0]

⌘
? =) NO
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Road to Identification (2/2)

Let E[yi (1)|xi = 1] ⌘ a, E[yi (1)|xi = 0] ⌘ b, E[yi (0)|xi = 1] ⌘ c, E[yi (0)|xi = 0] ⌘ d, then:

⌧ATE = ⇡ ⌧ATT + (1� ⇡)⌧ATU
⌧ATE = ⇡

�
a � c

�
+ (1� ⇡)

�
b � d

�

⌧ATE = ⇡
�
a � c

�
+ (1� ⇡)

�
b � d

�
+

�
a � a

�
+

�
c � c

�
+

�
d � d

�

⌧ATE = ⇡a + b � ⇡b � ⇡c � d + ⇡d + (a � a) + (c � c) + (d � d)
⌧ATE = (a � d) + ⇡a + b � ⇡b � ⇡c � d + ⇡d � a + c � c + d
⌧ATE = (a � d)� (c � d)� a + ⇡a + b � ⇡b + c � ⇡c � d + ⇡d
⌧ATE = (a � d)� (c � d)� (1� ⇡)a + (1� ⇡)b + (1� ⇡)c � (1� ⇡)d
⌧ATE = (a � d)� (c � d)� (1� ⇡)(a � c) + (1� ⇡)(b � d)

⌧ATE = (a � d)� (c � d)� (1� ⇡)
⇥
(a � c)� (b � d)

⇤

⌧ATE =
⇣
E[yi (1)|xi = 1]� E[yi (0)|xi = 0]

⌘
�

⇣
E[yi (0)|xi = 1]� E[yi (0)|xi = 0]

⌘

| {z }
Selection Bias

� (1� ⇡)
⇣
⌧ATT � ⌧ATU

⌘

| {z }
Heterogeneous Treatment Effect Bias
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Randomized Control Trial

• We are going to assume that the treatment has been assigned to
individuals independent of their potential outcome:

xi ? yi(1), yi(0)

• Implications:

1. E[yi(0)|xi = 1]� E[yi(0)|xi = 0] = 0

2. ⌧ATT � ⌧ATU = 0

3. ⌧ATE = E[yi(1)|xi = 1]� E[yi(0)|xi = 0]

• Estimation: hat instead of expectation.
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Regression Representation of Potential Outcome

• Remember: {y1(1), . . . , yn(1)} iid with yi(1) ⇠ (µ1,�2) we can always
write a random variable into an expectation component and an error
term: yi(1) = µ1 + ui(1) with ui(1) ⇠ (0,�2).

yi(1) =

yi(0) =

yi =

5



Implication Missing at Random

Given our assumption xi ? yi(1), yi(0) we have:
1. E[ui |xi ] = 0
2. E[uixi ] = 0
3. E[ui ] = 0
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Orthogonal Projection

Orthogonal Projection y = ŷ + ŷ?
Given a vector space V and a vector
subspace M there exists a unique
ŷ 2 M such that:

ŷ = arg min
x2M

ky � xk2L2

ŷ is the unique element characterized
by hy � ŷ, xi = 0, which is known as
orthogonality property.
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Orthogonal Projection vs Linear Regression

Orthogonal Projection y = ŷ + ŷ?
Given a vector space V and a vector
subspace M there exists a unique
ŷ 2 M such that:

ŷ = arg min
x2M
ky � xk2L2

ŷ is the unique element characterized
by hy � ŷ, xi = 0, which is known as
orthogonality property.

Linear Regression y = X� + u Given a
(nx1) vector y and a (nxd) matrix X
there exists a unique (dx1) vector of
parameters � such that:

� = arg min
b2Rd

E[(y �Xb)T (y �Xb)]

� is the unique element characterized
by X 0(y �X�̂) = 0, which is known as
sample moment condition.
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OLS Matrix Form

Matrix calculus results: given (nx1) vector y, (dx1) vector b, (nxn)
symmetric matrix A, (nxd) matrix X, we have:

@y0Ay

@y
= 2A y

@y(b)0y(b)

@b
= y0(b)

@y(b)

@b

@Xb

@b
= X

) @
@�E[(y �Xb)

T (y �Xb)] =

9



OLS Vector Form

Regression: yi = ↵+ xTi � + ui OLS: (↵,�) = arg min
(a,b)
E[(yi � a � x ti b)2]
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R2 - Coefficient of Determination

The R2 is a measure that indicates the proportion of the variance in the
dependent variable that is explained by the independent variables in the
model. Higher R2 indicates that the regression model fits the data better.

Let’s define:
• TSS ⌘

Pn
i=1(yi � ȳ)2

• ESS ⌘
Pn
i=1(ŷi � ȳ)2

• RSS ⌘
Pn
i=1(yi � ŷ)2

We want to show that:
(1) TSS = ESS+ RSS
(2) and R2 ⌘ 1� RSS

TSS
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Projection Matrix

Given our vector space V and M ✓ V , there is an orthogonal projection
PM : V �!M with the property that:

PM(y) = ŷ = X�̂

(1) Construct the projection matrix PM(·)
(2) Show that PM(·) is symmetric, i.e. PM = P 0M
(3) Show that PM(·) is idempotent, i.e. PM · PM = PM
(4) Show that PM(X) = X
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Annihilator Matrix

Given our vector space V and M ✓ V , there is an annihilator matrix
MM : V �!M? with the property that:

MM(y) = û = y �X�̂

(1) Construct the annihilator matrix MM(·)
(2) Show that MM(·) is symmetric, i.e. MM = M 0M
(3) Show that MM(·) is idempotent, i.e. MM ·MM = MM
(4) Show that MM(û) = û
(5) Show that PM ·MM = 0
(6) Show that PM +MM = In
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Frisch–Waugh–Lovell Theorem

If the regression we are interested in is expressed in terms of two separate
sets of predictor variables (partitioned regression):

Y = XA�A +XB�B + u

then the estimate of �̂A will be the same as the estimate of it from a
modified regression of the form:

MBY = MBXA�A +MBu

Partialling out effect: by including additional regressors (XB), the
coefficients of �A explains the variation between Y and XA not explained by
the other regressor.
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