ECON220B Discussion Section 3 Linear Regression and Bayesian Inference

Lapo Bini

Roadmap

- 1. Where is $\hat{\beta}^{OLS}$ going?
- 2. Linear Projection
- 3. Ridge Regression
- 4. Bayesian Inference

Understanding The Assumptions

Linear regression: $y_i = x_i^T \beta + u_i$ with $\{u_1, \ldots, u_n\}$ iid, $E[u_i] = 0$.

1. If $u_i|x_i \sim \mathcal{N}(0, \sigma^2)$ then $\hat{\beta}^{OLS}$ is BLUE by Markov-Gauss theorem, $\hat{\beta}^{OLS} = \hat{\beta}^{MLE}$. We are estimating a causal effect $x \to y$, i.e.

$$\frac{\partial}{\partial x_i} E[y_i | x_i] = \beta$$

- 2. If $E[u_i|x_i] = 0$ and, $E[u_i^2|x_i] = \sigma^2$, then $\hat{\beta}^{OLS}$ is BLUE by Markov-Gauss theorem. We are estimating a causal effect.
- 3. If $E[u_i|x_i] \neq 0$ but $E[u_i|x_i] = 0$ still holds then $\hat{\beta}^{OLS} \xrightarrow{p} \beta$ but we are estimating correlation between x and y, no partial effects.

1

Example (1/2)

Model: $y_i = \beta x_i + u_i$ $u_i = x_i^2 + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$, $x_i \perp \eta_i$.

- (1) Suppose we estimate the model by OLS, can we apply Markov-Gauss theorem?
- (2) Is $\hat{\beta}^{OLS}$ consistent for the true β ?

Example (1/2)

Model: $y_i = \beta x_i + u_i$, $u_i = x_i^2 + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$, $x_i \perp \eta_i$.

Example (1/2)

Model: $y_i = \beta x_i + u_i$ $u_i = x_i^2 + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$, $x_i \perp \eta_i$.

Example (2/2)

Now we have: $y_i = \beta x_i + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$.

(1) Suppose that instead of running a regression of y_i on x_i , you run the regression of x_i and y_i , that is you switch the dependent and independent variables:

$$x_i = \phi y_i + \nu_i$$

What is $\hat{\phi}^{OLS}$ estimating?

Example (2/2)

Now we have: $y_i = \beta x_i + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$.

Linear Projection

- If $E[u_i x_i] \neq 0$ then $\hat{\beta}^{OLS} \xrightarrow{p} \delta \equiv \beta + \Delta$ it converges to the coefficient of the linear projection.
- The linear projection $y_i = x_i^T \delta + u_i$ is also called the **minimum mean** square linear predictor since δ solves the following problem:

$$\min_{\mathbf{d} \in \mathbb{R}^k} E[(y_i - x_i^T \mathbf{d})^2]$$

• The linear projection always satisfies $E[x_i u_i] = 0$ and $E[u_i] = 0$.

7

When Does $E[u_i x_i] = 0$ Fail?

- Omitted variable bias: consider the following linear regression model $y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + u_i$ where y_i, x_i, z_i, u_i are all scalars and $E[u_i x_i] = E[u_i z_i] = 0$
- Suppose we regress y_i on x_i only: what is the probability limit of $\hat{\beta}_1^{OLS}$? When does the limit coincide with the true parameter β_1 ?

Two Religions: Frequentists vs Bayesians

Given $\{y_1, \ldots, y_n\}$ iid sample with $y_i \sim \mathcal{N}(\mu, \sigma^2)$ we are interested in the population mean μ . We already know that MLE estimator is $\hat{\mu}^{MLE} = n^{-1} \sum_{i=1}^{n} y_i \sim \mathcal{N}(\mu, \sigma^2/n)$. Two different approaches:

- 1. Frequentist: the data is the result of sampling from a random process. Frequentists see the data as varying and the parameter μ of this random process that generates the data as being fixed. $\mathcal{N}(\mu, \sigma^2/n)$ describes a distribution across different samples.
- 2. Bayesian: μ treates as a random variable. Bayesians have prior beliefs about μ (**prior distribution**), which is updated after observing the data (**likelihood function**) using **Bayes' Rule**. The **posterior distribution** summarises the uncertainty about credible values of μ .

Ridge Regression

- Consider the follow linear regression model $y_i = x_i^T \beta + u_i$, $u_i \sim \mathcal{N}(0, 1)$.
- Assume that the parameters $\beta \in \mathbb{R}^d$ follow the distribution $\beta \sim \mathcal{N}(0, \lambda^2 \mathbf{I}_d)$ where $\lambda > 0$ and \mathbf{I}_d is the $(d \mathbf{x} d)$ identity matrix.
- Lastly, assume that u_i, x_i, β are mutually independent.
- (1) Prove that $f_{\beta}(\beta) = \lambda^{-d} \prod_{j=1}^{d} \phi(\beta_j/\lambda)$.
- (2) Show that $f_{\mathbf{Y}|\beta,\mathbf{X}}(y_1,\ldots,y_n|\beta,\mathbf{X}) = \prod_{i=1}^n \phi(y_i x_i^T\beta)$.
- (3) Derive the Maximum Likelihood Estimator $\hat{\beta}^{MLE}$.
- (4) Find the posterior distribution $f_{\beta|\mathbf{Y},\mathbf{X}}(\beta|\mathbf{Y},\mathbf{X})$ and derive the Bayes estimator defined as

$$\hat{eta}^{Bayes} \equiv rg \max_{eta} f_{eta|\mathbf{Y},\mathbf{X}}(eta|\mathbf{Y},\mathbf{X})$$

Ridge Regression - Prior Distribution

Before observing the data, our prior belief is that the parameters are most likely to be close to zero. The parameter λ^2 represents the uncertainty of our guess, i.e. $\beta \sim \mathcal{N}(0, \lambda^2 I_2)$.

Figure: Prior distribution for different values of λ^2 .

Ridge Regression - Likelihood Function

The likelihood describes the probability of the data that has already been observed given certain parameter values β . Given different values of x_i and y_i , the points with highest probability lies on $y_i = 1 + 1.5x_i$.

Ridge Regression - Posterior Distribution

The posterior distribution, $\beta \mid \mathbf{Y}, \mathbf{X} \sim \mathcal{N}(m, Q)$, belongs to the same family of probability distributions as the prior when combined with the likelihood function \Longrightarrow the prior and posterior distributions are known as conjugate distributions.

Formalization Bayesian Inference

$$f_{\mu \mathbf{Y}}(\mu, \mathbf{Y}) = f_{\mu | \mathbf{Y}}(\mu | \mathbf{Y}) f_{\mathbf{Y}}(\mathbf{y})$$

 $f_{\mu \mathbf{Y}}(\mu, \mathbf{Y}) = f_{\mathbf{Y} | \mu}(\mathbf{Y} | \mu) f_{\mu}(\mu)$

$$f_{\mu|\mathbf{Y}}(\mu|\mathbf{Y}) = \frac{f_{\mathbf{Y}|\mu}(\mathbf{y}|\mu)}{f_{\mathbf{Y}}(\mathbf{y})} f_{\mu}(\mu) \propto f_{\mathbf{Y}|\mu}(\mathbf{y}|\mu) f_{\mu}(\mu)$$

Sample mean case:

- $\{y_1, \ldots, y_n\}$ iid sample with $y_i \sim \mathcal{N}(\mu, \sigma^2)$ and σ^2 known.
- $\mu \sim \mathcal{N}(m, Q)$
- $\mu | \mathbf{Y} \sim ?$

Posterior Distribution $\mu|\mathbf{Y}$

Posterior distribution:

$$\begin{split} f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\Big\{-\frac{1}{2\sigma^{2}}(y_{i}-\boldsymbol{\mu})^{2}\Big\} \cdot \frac{1}{\sqrt{2\pi Q}} \exp\Big\{-\frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\Big\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\bar{\mathbf{y}}+\bar{\mathbf{y}}-\boldsymbol{\mu})^{2}\Big\} \cdot \frac{1}{\sqrt{2\pi Q}} \exp\Big\{-\frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\Big\{-\frac{1}{2\sigma^{2}} \left[n(\bar{y}-\boldsymbol{\mu})^{2} + \sum_{i=1}^{n} (y_{i}-\bar{y})^{2} + 2(\bar{y}-\boldsymbol{\mu}) \sum_{i=1}^{n} (y_{i}-\bar{y})\right]\Big\} \cdot \frac{1}{\sqrt{2\pi Q}} \exp\Big\{-\frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\Big\{-\frac{n}{2\sigma^{2}}(\bar{y}-\boldsymbol{\mu})^{2}\Big\} \cdot (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\Big\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\bar{y})^{2}\Big\} \cdot \frac{1}{\sqrt{2\pi Q}} \exp\Big\{-\frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto \exp\Big\{-\frac{n}{2\sigma^{2}}(\bar{y}-\boldsymbol{\mu})^{2} - \frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} = \exp\Big\{-\frac{n}{2\sigma^{2}}(\bar{y}^{2}+\boldsymbol{\mu}^{2}-2\bar{y}\boldsymbol{\mu}) - \frac{1}{2Q}(\boldsymbol{\mu}^{2}+\boldsymbol{m}^{2}-2\boldsymbol{\mu}\boldsymbol{m})\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto \exp\Big\{-\frac{1}{2} \left[\boldsymbol{\mu}^{2} \left(\frac{n}{\sigma^{2}} + \frac{1}{Q}\right) + \boldsymbol{m}^{2} \left(\frac{1}{Q}\right) - 2\boldsymbol{\mu} \left(\frac{n}{\sigma^{2}}\bar{y} + \frac{1}{Q}\boldsymbol{m}\right)\right]\Big\} \cdot \exp\Big\{-\frac{1}{2} \left(\bar{y}^{2} \frac{n}{\sigma^{2}}\right)\Big\} \\ f_{\boldsymbol{\mu}|\mathbf{Y}}(\boldsymbol{\mu}|\mathbf{Y}) &\propto \exp\Big\{-\frac{1}{2Q}(\boldsymbol{\mu}-\boldsymbol{m})^{2}\Big\} &\Longrightarrow \boldsymbol{\mu}|\mathbf{Y} \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{Q}) \end{split}$$

Posterior moments:

$$-\frac{1}{2Q}\mu^2 = -\frac{1}{2}\mu^2\left(\frac{n}{\sigma^2} + \frac{1}{Q}\right) \implies \frac{1}{Q} = -\frac{1}{2}\mu^2\left(\frac{n}{\sigma^2} + \frac{1}{Q}\right) \implies \dot{Q} = \left[(\sigma^2/n)^{-1} + Q^{-1}\right]^{-1}$$

$$\frac{1}{2Q}2\mu\dot{m} = \frac{1}{2}2\mu\left(\frac{n}{\sigma^2}\ddot{y} + \frac{1}{Q}m\right) \implies \dot{m} = \dot{Q}\left[(\sigma^2/n)^{-1}\ddot{y} + Q^{-1}m\right]$$

$$\implies \dot{m} = \dot{Q}\left[(\sigma^2/n)^{-1}\ddot{y} + Q^{-1}m\right]$$

Bayesian Inference

$$\dot{m} = \left(\frac{Q^{-1}}{Q^{-1} + (\sigma^2/n)^{-1}}\right) m + \left(\frac{(\sigma^2/n)^{-1}}{Q^{-1} + (\sigma^2/n)^{-1}}\right) \bar{y}$$

What happens when $n \to \infty$? And when $Q \to \infty$?

Under a quadratic loss function, the bayesian estimate of μ that minimizes the posterior expected loss is the mean of the posterior distribution \dot{m} :

$$E_{\mu|\mathbf{Y}}[(\mu-\hat{\mu})^2|\mathbf{Y}] =$$

Link Bayesian and Frequentist Inference

Bernstein-von Mises Theorem: under some regularity conditions, given $\tilde{\theta}$ with the posterior distribution, we have:

$$\tilde{\theta} \stackrel{p}{\to} \hat{\theta}^{MLE}$$

$$\sqrt{N}(\tilde{\theta} - \hat{\theta}^{MLE}) \stackrel{d}{\to} \mathcal{N}(0, Var(\hat{\theta}^{MLE}))$$

The most important implication of the Bernstein–von Mises theorem is that the Bayesian inference is asymptotically correct from a frequentist point of view.

Bayesian Linear Regression

- Previous result generalizes to linear regression case: $y_i = x_i^T \beta + u_i$ with $u_i \sim \mathcal{N}(0, \sigma^2)$ and σ^2 assumed to be known.
- Assume gaussian prior distribution: $f_{\beta}(\beta; \sigma^2) = \mathcal{N}(m, \sigma^2 Q)$.
- We get posterior distribution: $f_{\beta|\mathbf{Y},\mathbf{X}}(\beta|\mathbf{Y},\mathbf{X};\sigma^2) = \mathcal{N}(\dot{m},\sigma^2\dot{Q})$ where the moments of posterior distribution are:

(i)
$$\dot{Q} = (Q^{-1} + \hat{Q}_n^{-1})^{-1}$$

(ii)
$$\dot{m} = \dot{Q} \left(Q^{-1} m + \hat{Q}_n^{-1} \hat{\beta}^{OLS} \right)$$

(iii)
$$\hat{Q}_n = \left(\sum_{i=1}^n x_i x_i^T\right)^{-1}$$

• Now compare \dot{m} with the result from the ridge regression exercise.