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Understanding The Assumptions

Linear regression: y; = X,T5 + u; with {uy, ..., up} iid, E[u;] = 0.

1.

If uj|x; ~ N(0,02) then B°LS is BLUE by Markov-Gauss theorem,

BOLS = BMLE  We are estimating a causal effect x — y, i.e.
0
Elvix] =
3X,' [yll I] 5

. If E[ui|x] = 0 and, E[u?|x] = 02, then 393 is BLUE by Markov-Gauss

theorem. We are estimating a causal effect.

. If Euilx;] # 0 but E[uj x;] = 0 still holds then 85 2 3 but we are

estimating correlation between x and y, no partial effects.



Example (1/2)

Model: y; = Bx; + uj uj = x? + m; with true parameter 8 = 3, and
Xi NN(O' 1)7 ni NN(O'4)7 Xi L Ni-

(1) Suppose we estimate the model by OLS, can we apply Markov-Gauss
theorem?

(2) Is BOLS consistent for the true (37



Example (1/2)

Model: y; = Bx; + uj, Ui = x? + n; with true parameter 8 = 3, and
Xi NN(O' 1)) ni NN(O'4)7 Xi L Ni-
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Model: y; = Bx; + uj uj = x? + m; with true parameter 8 = 3, and
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Example (2/2)

Now we have: y; = Bx; + 1; with true parameter 8 = 3, and x; ~ N(0, 1),
ni ~N(0,4).

(1) Suppose that instead of running a regression of y; on x;, you run the
regression of x; and y;, that is you switch the dependent and
independent variables:

Xi = Qyi +vj

What is ¢°L° estimating?



Example (2/2)

Now we have: y; = Bx; + n; with true parameter 8 = 3, and x; ~ N(0, 1),
ni ~ N(0, 4).
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Linear Projection

o If Efu; x;] # 0 then BOLs b= B + A it converges to the coefficient of
the linear projection.

® The linear projection y; = X,-T(S + u; is also called the minimum mean
square linear predictor since § solves the following problem:

min E[(y,- - X,-Td)Q]
deRk

® The linear projection always satisfies E[x;u;] = 0 and E[u;] = 0.



When Does E|[u;x;] = 0 Fail?

® Omitted variable bias: consider the following linear regression model
Vi = Bo + B1x; + Boz; + u; where y;, x;, zj, u; are all scalars and
Eluixi] = Eluizj] =0

® Suppose we regress y; on X; only: what is the probability limit of 6? L59
When does the limit coincide with the true parameter 517



Two Religions: Frequentists vs Bayesians

Given {y1,...,yn} iid sample with y; ~ N'(u, o) we are interested in the
population mean . We already know that MLE estimator is
PMLE = n=151 yi ~ N(u, 02/n). Two different approaches:

1. Frequentist: the data is the result of sampling from a random process.
Frequentists see the data as varying and the parameter u of this random
process that generates the data as being fixed. N(u, 02/n) describes a
distribution across different samples.

2. Bayesian: u treates as a random variable. Bayesians have prior beliefs
about u (prior distribution), which is updated after observing the
data (likelihood function) using Bayes’ Rule. The posterior
distribution summarises the uncertainty about credible values of u.



Ridge Regression

® Consider the follow linear regression model y; = X,»T G+ uj, ui ~N(0,1).

e Assume that the parameters 8 € RY follow the distribution
B ~ N (0, \°14) where X\ > 0 and I is the (dxd) identity matrix.

® Lastly, assume that uj, x;, 8 are mutually independent.

(1) Prove that f3(8) = A9 T]L; (8;/)).

(2) Show that fyigx(y1, .-, yalB. X) = [TiL, 6y — X/ B).

(3) Derive the Maximum Likelihood Estimator BMLE,

(4) Find the posterior distribution fgjy x (8|Y,X) and derive the Bayes
estimator defined as

BBaves = arggqa>< fory x (BIY,X)



Ridge Regression - Prior Distribution

Before observing the data, our prior belief is that the parameters are most
likely to be close to zero. The parameter A represents the uncertainty of our

guess, i.e. B~ N(0, \°1p).

Figure: Prior distribution for different values of \2.
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Ridge Regression - Likelihood Function

The likelihood describes the probability of the data that has already been
observed given certain parameter values 3. Given different values of x; and
Yi, the points with highest probability lies on y; = 1 + 1.5x;.

Ty x, W Xs8={1,15})




Ridge Regression - Posterior Distribution

The posterior distribution, 8 | Y, X ~ N (m, Q)7 belongs to the same family
of probability distributions as the prior when combined with the likelihood
function = the prior and posterior distributions are known as conjugate

distributions.
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Formalization Bayesian Inference

Chain’s Rule: (1Y) = fuy(ulY) A(y)
fuy (4, Y) Friu(Ylp) fu(p)

i f
Bayes’ Rule: fuy(uY) = th(g’\)u) fu(u) o< fypu(ylw) fu(w)

Sample mean case:
o {y, ..., yn} iid sample with y; ~ A (u, 02) and 02 known.
* u~ N(mQ)



Posterior Distribution u|Y

Posterior distribution:

uw(u\Y)dH\/iexp{ sz i —uP} Wexp{ 55 (1= m?}

fure () x(2mo®) B exp{ - Z<y, 747 P} Samexp{ = 3o u—m?}

i W) s(zmo?) " Fexpf - 05 [ty - u)2+Z(y N mZ(y, 7]} Samgene{ - 550 - m?}

fury (1Y) x2m0?) ™ B exp{ = (7 - w2} - emo?) B exn{ - 255 2Z(y, 7P} e - 55 u—m?}

fury (WIY) o exp{_ﬁ(y_“) - (“ m) }*eXF'{—f(y +u? —2yﬂ)—*(ﬂ +m? —Z;I.m)}
i {3 2) e (8) (3 (-5
fury (WlY) o exp{ (u m)z} = ulY ~N(mQ)

Posterior moments:

1 Lofn 1 1_1po(n 1 S 1(02/m-1 4 o-11-1
ZQH =T oM 02+Q) = - SH (02 +Q) = Q=[c*/n)+Q71]

* DY SLAFTE m_no 1 CANe2 /154 -1
2O2um—22u<02y+Qm> = OfazerQm = m=Q[(e?/n) "y +Q Im]



Bayesian Inference

o Q1 (02/n)71 _
m= <Q1 + (02/n)1>m + (Ql + (02/n)1>y

What happens when n — 0co0? And when Q — 00?

Under a quadratic loss function, the bayesian estimate of y that minimizes
the posterior expected loss is the mean of the posterior distribution m:

Euyl(u—0)°1Y] =



Link Bayesian and Frequentist Inference

Bernstein-von Mises Theorem: under some regularity conditions, given 8
with the posterior distribution, we have:

é MLE

6
VN(E — 8MLE) & (0, Var(8MLE))

1= 1=

The most important implication of the Bernstein—von Mises theorem is that
the Bayesian inference is asymptotically correct from a frequentist point of
view.



Bayesian Linear Regression

® Previous result generalizes to linear regression case: y; = X,TB + u; with
ui ~ N(0,0?) and o2 assumed to be known.

e Assume gaussian prior distribution: f5(8; 02) = N'(m, 02Q).

® We get posterior distribution: fajy x (8]Y,X; 02) = N (rm, 0°Q) where
the moments of posterior distribution are:

() Q=@+
(i) m=Q (Q 'm+Q,!B°)
(ii)) Qn = (X0, xxT) ™

¢ Now compare m with the result from the ridge regression exercise.



