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Exercise 1

Consider the following linear model:
vi=a+x/B+u

where y; € R, x; € RY and u; € R. Note that the intercept is captured by o
and it is not included in x;. Suppose that we have an iid sample (y;, x;) for

We will assume E[u;] = 0 and E[x;u;] = 0.



Exercise 1 - Question 1

Write down the sample moment conditions for & and 8
Elwl =0 N _:; Sikico
o By = A
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Exercise 1 - Question 1

Write down the sample moment conditions for & and 8
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Exercise 1 - Question 2

Let {; be the regression residual, write down its expression in terms of y;, X;
and the estimated coefficient

1}..- = 5:-0(-::.-*,3 V/4



Exercise 1 - Question 3

Now regress {J; on an intercept and x;. Find the estimated coefficients.
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Exercise 1 - Question 3

Now regress {J; on an intercept and x;. Find the estimated coefficients.

* PROPOSED SOLUTION 2 ¢ we wowt To aslumala
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Exercise 1 - Question 4

Let X be the sample mean of the regressors, and define X; = x; — X. Find the
estimated coefficient. Now regress y; on an intercept and X;. Find the
estimated coefficients & and 5. How are they related to the estimates & and
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Exercise 1 - Question 4

Let X be the sample mean of the regressors, and define X; = x; — X. Find the
estimated coefficient. Now regress y; on an intercept and X;. Find the
estimated coefficients & and 5. How are they related to the estimates & and
B?
( o3 v
(4\ELuw,J:=0 => ;z:j._' = 8o + :.‘“fo P

|
™M
%
"
(¢
)
[- &Y
(1]
ReE
[0
83

(2) ELxcu;1=0 ‘l“Zx;g,; s L3, ¢ LixFEif=0

Now NOTICE THAT ¥ y:5%T =T e (x:-%)"= T x, ™ - 2x:x"
ZxexXT - X"

,—LZIJ‘A‘, : L3 x:8, #(2T e - ),’é:



Exercise 1 - Question 4

Let X be the sample mean of the regressors, and define X; = x; — X. Find the
estimated coefficient. Now regress y; on an intercept and X;. Find the
estimated coefficients & and 5. How are they related to the estimates & and
B?
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Exercise 1 - Question 5

Claim: & = %27:1 Yi. True or false?” TRUE
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Exercise 2

Assume {x;}7_; iid sample from a univariate distribution, x; € R. Denote by
F(-) the cumulative distribution which is defined as:

F(x) =P(x; < x)

For simplicity we will assume that x; is continuously distributed on the unit
interval such that:

® f(x) =0 for all x <0.

® F(x)=1for all x > 1.

® F(x) continuous and strictly increasing for all x € (0, 1).

e THIS IS A POWT
Define the empirical CDF as: ESTINATOR WHEN
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Exercise 2 - Question 1

Assume 0 < x < 1, find the asymptotic distribution of F(x)
STEP 4 : WHERE wiILL THE ASYMPTOTic DISTRIBUTION BE
centeeed ?
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Exercise 2 - Question 1

Assume 0 < x < 1, find the asymptotic distribution of F(x)
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Exercise 2 - Question 1

Assume 0 < x < 1, find the asymptotic distribution of F(x)
STEp 3¢ FIND ASYHPTOMC VARIANCE
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Exercise 2 - Question 2

Assume 0 < x # x’ < 1, find the asymptotic distribution of F(x) and F(x')
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Exercise 2 - Question 2

Assume 0 < x # x’ < 1, find the asymptotic distribution of F(x) and F(x')
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Exercise 2 - Question 2

Assume 0 < x # x’ < 1, find the asymptotic distribution of F(x) and F(x')
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(*) ca. THIS 2 AND PROOF
Exercise 2 - Question 3 IS COMPLETE .

Consider the hypothesis Hyp : F(x) = G(x) and define the following statistic:

KS = sup fIF(X) G(x)|

x€[0,1

Show that under the null, the KS statistic can be rewritten as:

n
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KS = sup vn
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Exercise 2 - Question 4

Consider the hypothesis Hp : F(x) = G(x) and show that the KS statistic
does not depend on the underlying distribution F(-)
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Exercise 2 - Question 5

Discuss how you can modify the KS statistic to test FOSD.
Ho : ¢f-) Fosd £'(-). 2 OBSERVATIONS
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