ECON220B Discussion Section 4 Midterm Review

Lapo Bini

- 1. Question 1: Algebraic Properties of OLS
- 2. Question 2: Properties Empirical CDF Estimator

Exercise 1

Consider the following linear model:

$$y_i = \alpha + \mathbf{x}_i^T \boldsymbol{\beta} + u_i$$

where $y_i \in \mathbb{R}$, $\mathbf{x}_i \in \mathbb{R}^d$ and $u_i \in \mathbb{R}$. Note that the intercept is captured by α and it is not included in \mathbf{x}_i . Suppose that we have an iid sample (y_i, \mathbf{x}_i) for i = 1, ..., n.

We will assume $E[u_i] = 0$ and $E[\mathbf{x}_i u_i] = 0$.

Write down the sample moment conditions for $\hat{\alpha}$ and $\hat{\beta}$

EXTRA - USEFUL FOR LATER
(1) DERIVE
$$\hat{\alpha}$$

 $\frac{1}{m}\Sigma\hat{\mu}_{i} = 0 \implies \frac{1}{m}\Sigma(\underline{\mu}_{i} - \hat{\alpha} - \underline{x}_{i}\hat{\beta}) = 0$
 $\frac{1}{m}\Sigma\underline{\mu}_{i} = -\frac{1}{m}\Sigma\hat{\alpha} - \frac{1}{m}\Sigma\underline{x}_{i}\hat{\beta} = 0$
 $\bar{\mu} - \frac{m}{m}\hat{\alpha} - (\frac{1}{m}\Sigma\underline{x}_{i})\hat{\beta} = 0 \qquad \therefore \quad \hat{\alpha} = \bar{\mu} - \bar{\underline{x}}\hat{\beta}$

Write down the sample moment conditions for $\hat{\alpha}$ and $\hat{\beta}$ (2) DERIVE B $\frac{1}{2} \sum x_i \hat{\mu}_i = 0 \implies \frac{1}{2} \sum x_i (\mu_i - \hat{\alpha} - x_i \hat{\beta}) = 0$ $\frac{1}{2} \sum x_{i} y_{i} = \frac{1}{2} \sum x_{i} \hat{\alpha} = \frac{1}{2} \sum x_{i} x_{i}^{T} \hat{\beta} = 0$ $\frac{1}{2} \sum x_i y_i^* - \frac{1}{2} \sum x_i (\overline{y} - \overline{x} \cdot \widehat{\beta}) - \frac{1}{2} \sum x_i x_i^T \widehat{\beta} = 0$ $\frac{1}{2}\Sigma x_{i} y_{i} - \frac{1}{2}\Sigma x_{i} y_{i} + \frac{1}{2}\Sigma x_{i} x_{i} \hat{\beta} - \frac{1}{2}\Sigma x_{i} x_{i} \hat{\beta} = 0$ $- \left(\frac{1}{2} \sum x_i \right) \overline{x} + \left(\frac{1}{2} \sum x_i \right) \overline{x}^{T} \widehat{\beta} - \frac{1}{2} \sum x_i x_i^{T} \widehat{\beta} = 0$ $\frac{1}{2}\Sigma x_{i} y_{i} - \overline{x} \overline{y} + \overline{x} \overline{x} \overline{x} \hat{\beta} - \frac{1}{2}\Sigma x_{i} x_{i} \hat{\beta} = 0$ $\hat{\beta} = \left(\frac{1}{2}\Sigma x_i x_i^{T} - \overline{x}\overline{x}^{T}\right)^{-1} \left(\frac{1}{2}\Sigma x_i y_i^{T} - \overline{x}\overline{y}\right) \quad ///$

Let \hat{u}_i be the regression residual, write down its expression in terms of y_i , \mathbf{x}_i and the estimated coefficient

Now regress \hat{u}_i on an intercept and \mathbf{x}_i . Find the estimated coefficients. WHAT WE KNOW ABOUT \hat{u}_i : $\sum \hat{u}_i = 0$ $\sum \mathbf{x}_i \hat{u}_i = 0$

PROPOSED SOLUTION 1:

 $\hat{\mu}$: = $\delta_0 + x_1^T \delta_1 + \varepsilon_1^T$ THIS IS THE REGRESSION WE WANT TO ESTIMATE, NOW DEFINE : $\therefore \hat{\Gamma} = (\Sigma \times i \times i)^{-1} (\Sigma \times i \hat{\mu}_i) = \frac{\Sigma \cdot \mu_i}{\Sigma \times i \hat{\mu}_i} = 0$ THEN 8 =0 8.=0 /1/

Now regress \hat{u}_i on an intercept and \mathbf{x}_i . Find the estimated coefficients.

• PROPOSED SOLUTION 2: we want to estimate h:= Xo + X! X. + EL. FROM OUR DERIVATION BEFORE = 0 = $\frac{1}{2} \sum \hat{\mu}_i = 0$ BY PROPERTY $\hat{\chi}_{i} = \left(\frac{1}{m} \Sigma x_{i} x_{i}^{T} - \overline{x} \overline{x}^{T}\right)^{-1} \left(\frac{1}{m} \Sigma x_{i} \hat{u}_{i}^{T} - \overline{x} \overline{\hat{u}}\right)$ OLS. $\hat{\chi} = \left(\frac{1}{m} \Sigma x_{i} x_{i}^{T} - \overline{x} \overline{x}^{T}\right)^{-1} \left(O - O \right) = O$ $\hat{\mathbf{x}}_{1} = \tilde{\mathbf{x}}_{1} - \tilde{\mathbf{x}}_{1} \hat{\mathbf{x}}_{1} = \mathbf{0} - \tilde{\mathbf{x}}_{1} \mathbf{0} = \mathbf{0}$ These $\hat{X}_1 = \hat{X}_2 = O$ ///

Let \bar{x} be the sample mean of the regressors, and define $\check{\mathbf{x}}_i \equiv \mathbf{x}_i - \bar{x}$. Find the estimated coefficient. Now regress y_i on an intercept and $\check{\mathbf{x}}_i$. Find the estimated coefficients $\check{\alpha}$ and $\check{\beta}$. How are they related to the estimates $\hat{\alpha}$ and $\hat{\beta}$?

$$M_{i} = \alpha + x_{i}^{T}\beta + \overline{x}^{T}\beta - \overline{z}^{T}\beta + \mu_{i}^{T}$$

$$M_{i} = \alpha - \overline{x}^{T}\beta + (x_{i}^{T} - \overline{x}^{T})\beta + \mu_{i}^{T}$$

$$M_{i} = (\alpha - \overline{x}^{T}\beta) + \tilde{x}_{i}^{T}\beta + \mu_{i}^{T}$$

$$M_{i} = \check{\alpha} + \tilde{x}_{i}^{T}\beta + \mu_{i}^{T} \quad \therefore \quad \check{\beta} = \hat{\beta} \qquad \text{BUT INTERLEPT IS}$$

$$CHANGING.$$
TO BETTER SEE THIS, WE WILL DERIVE BOTH & AND $\check{\beta}$
IN THE ALEXT SLIDE

Let \bar{x} be the sample mean of the regressors, and define $\check{\mathbf{x}}_i \equiv \mathbf{x}_i - \bar{x}$. Find the estimated coefficient. Now regress y_i on an intercept and $\check{\mathbf{x}}_i$. Find the estimated coefficients $\check{\alpha}$ and $\check{\beta}$. How are they related to the estimates $\hat{\alpha}$ and Â? $= \left[\frac{1}{2} \sum (x_{i}^{T} \cdot \overline{x}^{T})\right] \beta = 0$ $(1) EL u;] = 0 = \sum \frac{1}{m} \Sigma y = \delta_0 + (\frac{1}{m} \Sigma \tilde{x};) \beta$ $\frac{1}{2} \sum y_i = \hat{x}_0 \quad \hat{x}_0 = \check{\alpha} = \pi$ (2) ELx:u:] = 0 $\frac{1}{2} \sum x_i y_i = \frac{1}{2} \sum x_i \hat{x}_0 + \frac{1}{2} \sum x_i \hat{x}_i \hat{\beta} = 0$ $\sum \mathbf{x}_i \mathbf{\hat{x}}_i^T = \sum \mathbf{x}_i (\mathbf{x}_i - \mathbf{\bar{x}})^T = \sum \mathbf{x}_i \mathbf{x}_i^T - \sum \mathbf{x}_i \mathbf{x}_i^T$ NOW NOTICE THAT $= \sum \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}^{\mathsf{T}}$

$$\therefore \quad \frac{1}{m} \Sigma \mathbf{x}_i \mathbf{y}_i = \frac{1}{m} \Sigma \mathbf{x}_i \hat{\mathbf{x}}_0 + \left(\frac{1}{m} \Sigma \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} - \overline{\mathbf{x}} \overline{\mathbf{x}}^{\mathsf{T}}\right) \hat{\boldsymbol{\beta}} = \mathbf{O}$$

Let $\bar{\mathbf{x}}$ be the sample mean of the regressors, and define $\mathbf{\check{x}}_i \equiv \mathbf{x}_i - \bar{\mathbf{x}}$. Find the estimated coefficient. Now regress y_i on an intercept and $\mathbf{\check{x}}_i$. Find the estimated coefficients $\check{\alpha}$ and $\check{\beta}$. How are they related to the estimates $\hat{\alpha}$ and $\hat{\beta}$?

LASTLY SUBSTITUTE
$$\hat{x}_{o}$$
 AND $\vec{\beta} = \left(\frac{1}{m} \Sigma x_{i} x_{i} - \overline{x} \overline{x}^{\dagger}\right)^{-1} \left(\frac{1}{m} \Sigma x_{i} y_{i} - \overline{x} \overline{y}\right) = \hat{\beta}$

Claim:
$$\check{\alpha} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
. True or false? TRUE
WE HAVE $\underline{M}: = (\alpha + \overline{\alpha}^{T}\beta) + \widetilde{\Sigma}:\beta + \widehat{\mu}:$
FROM $\frac{1}{m} \Sigma \widehat{\mu}: = 0 \implies \frac{1}{m} \Sigma \underline{M}: - \overset{*}{\alpha} - \overset{*}{\alpha}:\overset{*}{\beta} = 0$
 $\frac{1}{m} \Sigma \underline{M}: - \frac{1}{m} \Sigma \overset{*}{\alpha} + \frac{1}{m} \Sigma \overset{*}{\beta}: \overset{*}{\beta} = 0$
 $\underline{J}_{\underline{m}} - \overset{*}{\alpha} + (\underbrace{J}_{\underline{m}} \Sigma (\underline{x}: - \overline{x}^{T})) \widehat{\beta} = 0$
 $\vdots \quad \check{\alpha} = \underline{J}_{\underline{m}} = \frac{1}{m} \Sigma \underline{M}:$

Assume $\{x_i\}_{i=1}^n$ iid sample from a univariate distribution, $x_i \in \mathbb{R}$. Denote by $F(\cdot)$ the cumulative distribution which is defined as:

$$F(x) = \mathbb{P}(x_i \leq x)$$

For simplicity we will assume that x_i is continuously distributed on the unit interval such that:

- F(x) = 0 for all $x \le 0$.
- F(x) = 1 for all $x \ge 1$.
- F(x) continuous and strictly increasing for all $x \in (0, 1)$.

Define the empirical CDF as:

$$\widehat{F}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{x_i \leq \mathbf{x}\}$$

- THIS IS A POINT ESTIMATOR WHEN YOU PLUG 2
- YOU GET ESTIMATE CDF ITERATING OVER SUPPORT OF X 7

Assume 0 < x < 1, find the asymptotic distribution of $\hat{F}(x)$ STEP 1: WHERE WILL THE ASYMPTOTIC DISTRIBUTION BE CENTERED ? $15.3 \sim \text{BERNOULLI}(\mathbb{P}(X:\leq x))$ $\frac{1}{2} \sum \Delta \{ X_{i} \leq x \} \xrightarrow{P} E \lfloor \Delta \{ X_{i} \leq x \} \} = 1 \cdot \mathbb{P}(X_{i} \leq x) + O(1 - \mathbb{P}(X_{i} \leq x))$ by WLLN SINCE EX: 3 ... ID FINITE MEAN AND VARIANCE $\therefore \vec{F}(x) = \pm \Sigma \pounds \{ X_{i} \leq x \} \xrightarrow{P} \mathbb{P}(X_{i} \leq x) = F(x) \}$

Assume
$$0 < x < 1$$
, find the asymptotic distribution of $\hat{F}(x)$
STEP 2: APPLY CLT
 $V_m(\hat{F}(x) - \hat{F}(x)) = V_m(\frac{1}{m} \sum \hat{I} \{X, : \le x\} - \frac{m}{m} \hat{F}(x))$
 $= V_m \{\frac{1}{m} \sum (\hat{I} \{X, : \le x\} - \hat{F}(x))\}$
 $= \frac{1}{V_m} \sum (\hat{I} \{X, : \le x\} - \hat{F}(x)) \xrightarrow{d} N(O, V)$

Assume
$$0 < x < 1$$
, find the asymptotic distribution of $\hat{F}(x)$
STEP 3: FIND ASYMPTOTIC VARIANCE
 $V = \text{Von} (\sqrt{m} (\hat{F}(x) - F(x))) = \text{Von} (\frac{1}{\sqrt{m}} \sum (4 \{ X; \le x \} - F(x)))$
 $= \frac{1}{m} \text{Von} (\sum (4 \{ X; \le x \} - F(x))) = \frac{1}{\sqrt{m}} \sum (4 \{ X; \le x \} - F(x)) = \frac{1}{\sqrt{m}} \sum (4 - F(x)) = \frac{1}{\sqrt{m}} \sum \frac{1}{\sqrt{m}}$

Assume $0 < x \neq x' < 1$, find the asymptotic distribution of $\hat{F}(x)$ and $\hat{F}(x')$

STEP 1: FIND PLIM. WE KNOW FROM BEFORE THAT $\hat{F}(x) \xrightarrow{P} F(x)$ Then we get $\begin{vmatrix} \hat{F}(x) \\ \hat{F}(x) \end{vmatrix} \xrightarrow{P} \begin{vmatrix} F(x) \\ F(x) \end{vmatrix}$

STEP 2: APPLY CLT (MULTIVARIATE) : {X:3??, IIB, and ASYMPTOTIC VARIANCE $\hat{F}(x)$ FINITE SINCE $F(x) \in [0,1]$ THEN COVARIANCE $\hat{F}(x)$ AND $\hat{F}(x')$ FINITE AND

$$\operatorname{Vm}\left(\left|\begin{array}{c} \hat{\mathbf{f}}(\mathbf{x})\\ \hat{\mathbf{f}}(\mathbf{x}')\end{array}\right| - \left|\begin{array}{c} \mathbf{f}(\mathbf{x})\\ \mathbf{f}(\mathbf{x}')\end{array}\right|\right) \xrightarrow{d} \mathcal{N}\left(\left|\begin{array}{c} \mathbf{0}\\ \mathbf{0}\end{array}\right|; \left|\begin{array}{c} \mathbf{f}(\mathbf{x})(\mathbf{1}-\mathbf{f}(\mathbf{x}))\\ \mathbf{\omega}\mathbf{v}\end{array}\right|\right)$$

LET'S DERIVE THIS

Assume $0 < x \neq x' < 1$, find the asymptotic distribution of $\hat{F}(x)$ and $\hat{F}(x')$ $Cov = Cov \left(\sqrt{m} \left(\hat{E}(x) - E(x) \right) \right) \sqrt{m} \left(\hat{E}(x') - E(x') \right) \right)$ a, belk $= \operatorname{Cov} \left(\frac{1}{\sqrt{m}} \sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right); \frac{1}{\sqrt{m}} \sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(a \times b \right) = \operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \leq x \right\} - \operatorname{F} \left(x \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} = \operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(X_{1} \in X_{1} \right) \right) \xrightarrow{X, Y \ RV_{0}} \operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{Cov} \left(\operatorname{A} \left\{ X_{1} \in X_{1} \right\} - \operatorname{F} \left(\operatorname{Cov} \left(\operatorname{Cov$ $= \frac{1}{2} \operatorname{Cov} \left(\sum \left(\operatorname{A} \left\{ \mathbf{x}_{i} \leq \mathbf{x}_{i} \right\} - \operatorname{F} \left(\mathbf{x}_{i} \right) \right); \sum \left(\operatorname{A} \left\{ \mathbf{x}_{i} \leq \mathbf{x}_{i} \right\} - \operatorname{F} \left(\mathbf{x}_{i} \right) \right) \right)$ $= \frac{1}{m} \operatorname{Cov} \left(\sum_{n=1}^{\infty} \operatorname{I} \left\{ X_{n}^{n} \leq x^{n} \right\} ; \sum_{n=1}^{\infty} \operatorname{I} \left\{ X_{n}^{n} \leq x^{n} \right\} \right) \xrightarrow{\operatorname{Cov} \left(\alpha + Y_{n}, b + Y \right)} = \operatorname{Cov} \left(X_{n}^{n} Y_{n} \right)$ · M TIMES COV (1 {X; ≤x3, 1 {X; ≤x3}) SINCE IDENTICALLY DISTRIBUTED • m(m-1) TIMES Cov (1 1 X: = x 3, 1 1 X; = x 3) WITH i = ; BUT ALL ZEROS SINCE X: 业X, V:+5

$$= \frac{m}{m} \operatorname{Cov} \left(\mathbf{1} \, \mathbf{1} \, \mathbf{X}' \leq \mathbf{x}^{2}, \, \mathbf{1} \, \mathbf{X}' \leq \mathbf{x}'^{2} \right)$$

Assume $0 < x \neq x' < 1$, find the asymptotic distribution of $\hat{F}(x)$ and $\hat{F}(x')$

$$Cov = EL\underline{1} \{ X: \leq x \} \underline{1} \{ X: \leq x \}] - EL\underline{1} \{ X: \leq x \}]EL\underline{1} \{ X: \leq x \}]$$
$$:= K = \begin{cases} 1 & |F| \{ X: \leq x \} U \{ X: \leq x \} \\ 0 & |C| | E \\$$

$$Cov = EL \underline{1} \{ X: \leq min \{ x, x' \} \} - f(x) f(x')$$

$$cov = \mathbb{P}(X; \leq \min\{x, x'\}) - \mathbb{F}(x)\mathbb{F}(x')$$

$$= \int (\min\{x, x'\}) - f(x)f(x')$$

Exercise 2 - Question 3 (*) CALL THIS & AND PROOF

Consider the hypothesis H_0 : F(x) = G(x) and define the following statistic:

$$KS = \sup_{x \in [0,1]} \sqrt{n} |\hat{F}(x) - G(x)|$$

Show that under the null, the KS statistic can be rewritten as:

$$\begin{split} \mathcal{K}S &= \sup_{x \in [0,1]} \sqrt{n} \left| \frac{1}{n} \sum_{i=1}^{n} \left(\mathbb{1} \{ F(x_i) \leq x \} - x \right) \right| \quad \text{define } \mathbf{y} := \mathbf{f}(\mathbf{x}) \\ \text{We know } \mathbf{y} \in \mathbf{E}[0, \mathbf{1}]. \quad \text{SINCE } \mathbf{f}(\cdot) \quad \text{STRICTLY INCREASING AND CONTINUOUS} \\ \exists F^{-1}(\cdot), \text{THEN} \\ \sup_{x \in \mathbf{E}[0,1]} \sqrt{n} \left| \frac{1}{m} \sum \mathbf{A} \{ \mathbf{x} : \leq \mathbf{x} \} - \mathbf{F}(\mathbf{x}) \right| = \sup_{y \in \mathbf{E}[0,1]} \sqrt{n} \left| \frac{1}{m} \sum \mathbf{A} \{ \mathbf{x} : \leq \mathbf{F}^{-1}(\mathbf{x}) \} - \mathbf{y} \right| \quad (\texttt{m}) \\ &= \sup_{x \in \mathbf{E}[0,1]} \sqrt{n} \left| \frac{1}{m} \sum \mathbf{A} \{ \mathbf{x} : \leq \mathbf{F}(\mathbf{x}) \} \leq \mathbf{F}(\mathbf{F}^{-1}(\mathbf{y})) \} - \mathbf{y} \} = \sup_{y \in \mathbf{E}[0,1]} \sqrt{n} \left| \frac{1}{m} \sum \mathbf{A} \{ \mathbf{F}(\mathbf{x}:) \leq \mathbf{y} \} - \mathbf{y} \right| \quad (\texttt{m}) \end{split}$$

Consider the hypothesis $H_0: F(x) = G(x)$ and show that the KS statistic does not depend on the underlying distribution $F(\cdot)$.

 $\sup_{x \in [0,1]} \sqrt{m} \left| \frac{1}{m} \sum \mathcal{I}[X,] \leq \infty \right] = E(\infty)$ NOW CALL $Y := E(\infty)$ WHAT IS ITS LOF ? $\mathbb{E}(\mathbf{u}) = \mathbb{P}(\mathbf{Y} \leq \mathbf{u}) = \mathbb{P}(\mathbb{E}(\mathbf{x}) \leq \mathbf{u}) = \mathbb{P}(\mathbf{X} \leq \mathbb{E}^{-1}(\mathbf{u})) = \mathbb{E}(\mathbb{E}^{-1}(\mathbf{u})) = \mathbf{u}$ E(4) = 4 => CDF OF UNIFORM OVER UNIT INTERVAL E0.13 - fr (3)=1 £,(y) = H 0 WE DON'T CARE ABOUT $F(\cdot)$, BY CHANCE OF VARIABLE ALWAYS UNIFORM

Discuss how you can modify the KS statistic to test FOSD. $H_o: G(\cdot)$ FOSD $f'(\cdot)$. Z OBSERVATIONS

INTERESTED IN THE AREA BETWEEN THE CURVES Y IF Ho £(.) ≤ G(.) WE INTERESTED IN ORIENTED DEVIATIONS : WE NEED TO REMOVE ABSOLUTE VALUE $\therefore t = \int \sqrt{Tm} (\hat{E}(x) - G(x))^{\dagger} dx = > IF t \ge 0 THEN EVIDENCE$ TO REGELT HO $E = \int \sqrt{m} (\hat{E}(x) - G(x)) \mathbf{1} \{ \hat{E}(x) - G(x) \} \partial dx$