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Roadmap

1. From RCT to Selection on Observables

2. Inverse Probability Weighting

3. Regression Adjustment Estimator

4. Propensity Score and Heavy-Tailed Distributions



Potential Outcome Framework

• Treatment: xi = 1{treated}
• Observed outcome: yi = xiyi(1) + (1− xi)yi(0)
• RCT assumption: xi ⊥ (yi(1), yi(0))

RCT: randomization equalizes everything other than the treatment in the
treatment and control group. Fine for randomized experiment, what about
observational studies?
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Cancer & Smoking

”Considerable propaganda is now being developed to convince the public that
cigarette smoking is dangerous.” - Sir. Ronald Fisher (1958)
What was his argument?
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”[...] run the risk of failing to recognize, and therefore failing to prevent,
other and more genuine causes”
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Different Identification Strategies

Starting point is conditional independence, or uncounfoundedness, or
selection on observables:

xi ⊥ (yi(1), yi(0))|wi

i.e. all confounders have already been identified and accounted for by the set
of covariates. Then two possible ways to estimate τATE ≡ E[yi(1)− yi(0)]
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Inverse Probability Weighting (1/2)

• We model how the treatment take-up decision xi is related with the
covariates wi , re-weighting each observation by the likelihood of
receiving the treatment.

• Overlap condition: 0 < P (xi = 1|wi = w) < 1, i.e. for a particular
characteristic wi = w if we observe some treated unit, then we should be
able to observe some untreated unit as well.

• E
[
xiyi
e(wi )

]
=

4



Inverse Probability Weighting (2/2)

• The propensity score e(wi) ≡ P (xi = 1|wi = w) is a balancing score:
after conditioning on the propensity score, the distribution of the
treatment is the same for treated and untreated:

xi ⊥ wi |e(wi)

• e(wi) is all you need to know: sufficient statistic for xi .
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More About Overlap Condition

Note: 0 < P (xi = 1|wi = w) < 1⇐⇒ fw |xi=1(w) > 0, fw |xi=0(w) > 0
Proof
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Regression Adjustment Estimator

Do we really need overlap condition? No −→ linearity assumption: interaction
effect of covariates and treatment

τATE = E[yi(1)− yi(0)] = E[yi(1)]− E[yi(0)]
τATE = E[E[yi(1)|wi ]− E[yi(0)|wi ]]
τATE = E[E[yi(1)|wi , xi = 1]− E[yi(0)|wi , xi = 0]]
τATE = E[E[yi |wi , xi = 1]− E[yi |wi , xi = 0]]
τATE = E[g1(wi)− g0(wi)] = E[wTi δ1 − wTi δ0] = µTw (δ1 − δ0)
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Propensity Score and Heavy-Tailed Distributions

Consider the inverse probability weighting estimator:

θ̂ =
1

n

n∑
i=1

xiyi
e(wi)

where xi is the binary indicator of treatment status, yi is the outcome
variable, and wi represents the covariates. For simplicity, we assume that the
propensity score, e(wi) = P [xi = 1|wi ], is known. In addition, assume yi is
bounded
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Heavy-Tailed Distributions

Some useful definitions:
• A distribution is heavy-tailed if E[etX ] =∞ ∀t > 0
• A distribution is light-tailed if it is not heavy-tailed.
• A distribution is light-tailed if E[Xk ] <∞ ∀t > 0

9



Propensity Score and Heavy-Tailed Distributions

Q.1 - Assume strong overlap, show that E
[ ∣∣∣ xiyie(wi )

∣∣∣2] <∞ then conclude

Var
(
θ̂
)
<∞.
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Propensity Score and Heavy-Tailed Distributions

Q.2 - Now assume the propensity score can be arbitrarily close to zero
P (e(wi) ≤ δ) = δγ . What will happen if γ is small?
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Propensity Score and Heavy-Tailed Distributions

Q.3 - Take γ = 2. Plot the density function of the propensity score. Is this

sufficient to show that E
[ ∣∣∣ xiyie(wi )

∣∣∣2] <∞?
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Propensity Score and Heavy-Tailed Distributions

Q.3 - Take γ = 2. Plot the density function of the propensity score. Is this

sufficient to show that E
[ ∣∣∣ xiyie(wi )

∣∣∣2] <∞?
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Propensity Score and Heavy-Tailed Distributions

Q.4 - Discuss what will happen if γ < 1.
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