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Roadmap

1. From RCT to Selection on Observables

2. Inverse Probability Weighting

3. Regression Adjustment Estimator

4. Propensity Score and Heavy-Tailed Distributions



Potential Outcome Framework

® Treatment: x; = 1{treated}
® Observed outcome: y; = x;y;(1) + (1 — x;)yi(0)
® RCT assumption: x; L (y;(1), y;i(0))
RCT: randomization equalizes everything other than the treatment in the

treatment and control group. Fine for randomized experiment, what about
observational studies?



Cancer & Smoking

”Considerable propaganda is now being developed to convince the public that
cigarette smoking is dangerous.” - Sir. Ronald Fisher (1958)

What was his argument?

"[...] run the risk of failing to recognize, and therefore failing to prevent,
other and more genuine causes”



Different Identification Strategies

Starting point is conditional independence, or uncounfoundedness, or
selection on observables:

xi L (vi(1), yi(0))|w;

i.e. all confounders have already been identified and accounted for by the set
of covariates. Then two possible ways to estimate To7e = E[y;(1) — y;(0)]




Inverse Probability Weighting (1/2)

® We model how the treatment take-up decision x; is related with the
covariates w;, re-weighting each observation by the likelihood of
receiving the treatment.

® Overlap condition: 0 < P(x; = 1|w; = w) < 1, i.e. for a particular
characteristic w; = w if we observe some treated unit, then we should be
able to observe some untreated unit as well.

e(w;)

.E{Wi}:



Inverse Probability Weighting (2/2)

® The propensity score e(w;) = P(x; = 1|w; = w) is a balancing score:
after conditioning on the propensity score, the distribution of the
treatment is the same for treated and untreated:

xi L wile(w;)

® e(w;) is all you need to know: sufficient statistic for x;.



More About Overlap Condition

Note: 0 < P(x; = 1{w; = w) < 1 <= fi|;,—1(W) > 0, fiy|,—o(W) >0
Proof



Regression Adjustment Estimator

Do we really need overlap condition? No — linearity assumption: interaction
effect of covariates and treatment

Tate = E[yi(1) — yi(0)] = Elyi(1)] — E[yi(0)]

TaTe = E[Elyi(1)Iwi] — Elyi(0)|wi]]

TaTe = E[E[yi(1)|wi, x; = 1] — E[yi(0)|w;, x; = 0]]

TaTE = E[E[yi|wi, xi = 1] — Elyi|w;, x; = 0]]

Tare = Elg1(wi) — go(w))] = E[w/ 61 — w/ 60] = ), (81 — do)



Propensity Score and Heavy-Tailed Distributions

Consider the inverse probability weighting estimator:

R XiVi
o —— E
n e(w;)

i=1

where x; is the binary indicator of treatment status, y; is the outcome
variable, and w; represents the covariates. For simplicity, we assume that the
propensity score, e(wi) = P[x; = 1|w;], is known. In addition, assume y; is
bounded



Heavy-Tailed Distributions

Some useful definitions:
e A distribution is heavy-tailed if E[etX] = co Vt >0
® A distribution is light-tailed if it is not heavy-tailed.
e A distribution is light-tailed if E[X*] < oo Vt > 0



Propensity Score and Heavy-Tailed Distributions

2
e?fx:v)‘ } < 0o then conclude

Q.1 - Assume strong overlap, show that E [
Var (é) < 0.



Propensity Score and Heavy-Tailed Distributions

Q.2 - Now assume the propensity score can be arbitrarily close to zero
P (e(w;) <6) =0". What will happen if -y is small?



Propensity Score and Heavy-Tailed Distributions

Q.3 - Take v = 2. Plot the density function of the propensity score. Is this

2
XiYi
o) ] < o0?

sufficient to show that E [
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Propensity Score and Heavy-Tailed Distributions

Q.3 - Take v = 2. Plot the density function of the propensity score. Is this
2

XiYi

e(Wi)‘ ] < 007

sufficient to show that E [




Propensity Score and Heavy-Tailed Distributions

Q.4 - Discuss what will happen if v < 1.



