ECON220C Discussion Section 1 Review on Causality

Lapo Bini

- 1. Feedback 220B
- 2. From Linear Projection to Structural Model
- 3. DAG Representation
- 4. Exercise: Conditional Mean Independence
- 5. Exercise: Probability Limit OLS

ASYMPTOTIC LINEAR REPRESENTATION

Goal for Today

Suppose we have some data $\{y_i, x_i\}_{i=1}^n$, we want to understand what is required to go from a prediction model (reduced form) to a causal model (structural model). We will go through:

- 1. Linear projection: no assumptions \implies mathematical device.
- 2. Correlation: different interpretation of linear regression: $E[x_i u_i] = 0$.
- 3. Causal model: $E[u_i|x_i] = 0$ plus causal structure (DAG).

Suppose we have some data $\{y_i, x_i\}_{i=1}^n$ and we estimate $y_i = \delta_0 + x_i \delta_1 + e_i$ by OLS to study the predictive power of x_i . The linear projection gives us:

1. $\hat{\delta}$ consistent for true δ , known as the **minimum mean square error** linear predictor since δ solves the following problem:

$$\min_{\mathsf{d}_0,\mathsf{d}_1\in\mathbb{R}} E\big[(y_i-\mathbf{d}_0-x_i\mathbf{d}_1)^2\big]$$

2. The linear projection **always** satisfies $E[x_i e_i] = 0$ and $E[e_i] = 0$.

The results $E[x_i e_i] = 0$ and $E[e_i] = 0$ are tautological, why?

Model: $y_i = x_i^T \beta + u_i$

- If we impose $E[u_i x_i] = 0$, then $\hat{\beta}_{OLS}$ is consistent for the true parameter β which can be interpreted in terms of correlation.
- How is this different from $E[x_i e_i] = 0$ before?
- Remember example from 220B: $y_i = \beta x_i + u_i$, $u_i = x_i^2 + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1)$, $\eta_i \sim \mathcal{N}(0, 4)$, $x_i \perp \eta_i$.

Model: $y_i = \beta x_i + u_i \ u_i = x_i^2 + \eta_i$ with true parameter $\beta = 3$, and $x_i \sim \mathcal{N}(0, 1), \ \eta_i \sim \mathcal{N}(0, 4), \ x_i \perp \eta_i$.

Causality (I/II)

(i) We need to impose a precise causal structure. Let's consider the Directed Acyclic Graph (DAG) below:

(ii) Linear causal structure:

Causality (II/II)

(iii) Exogeneity condition: $E[u_i|x_i] = 0 \rightarrow$ after controlling for the covariates, the error term does not know anything about the regressors.

Question: in a linear regression model, say $y = \beta_1 x_1 + \beta_2 x_2 + u$, if $E[u_i|\mathbf{x}_i] = 0$ we interpret β_1 as the causal effect of x_1 holding x_2 constant. This is a **partial effect**: what happens to y when you change x_1 by one unit, keeping x_2 fixed. Is that meaningful if x_1 and x_2 are correlated?

Consider a causal system $Y \leftarrow X\beta + W\gamma + U$ where the variable on the left side is caused by the variables on the right side. Let Z be a potential causal factor of X, W, U and suppose an iid sample $\{Y_i, X_i, W_i, U_i\}_{i=1}^n$ is collected from the above model. Explain whether β and γ can be consistently estimated under each of the following conditions, assuming that there is no perfect multicollinearity:

- (i) $E[U|X, W, Z] = W\gamma_w + Z\gamma_z$
- (ii) $E[U|X, W, Z] = X\gamma_x + Z\gamma_z$
- (iii) $E[U|X, W, Z] = Z\gamma_z$
- (iv) $E[U|X, W, Z] = W^2 \gamma_w + Z \gamma_z$
- (v) $E[U|X, W, Z] = X\gamma_x + Z^2\gamma_z$

Suppose X and Y are generated according to the following model:

$$Y = X^3 + U$$

where X and U are independent random variables with mean 0. We have an iid sample $\{Y_i, X_i, U_i\}_{i=1}^n$ from the above population model. Now suppose we do not know the above model and we estimate the following linear regression model by OLS and QML:

$$Y + \alpha + X\beta + error$$

where error ~ iid $\mathcal{N}(0, \sigma_e^2)$.

- (i) Find a closed form solution for the probability limit of the linear projection coefficient $\hat{\beta}_{OLS}$.
- (ii) Define $e = Y \alpha X\beta$, show that Cov(e, X) = 0: Is e independent of X?
- (iii) Suppose you want to compute the asymptotic variance of $\sqrt{n}(\hat{\beta}_{OLS} \beta)$. Do you need to use a variance estimator robust to conditional heteroskedasticity?
- (iv) The QML estimator is based on the wrong model and the wrong assumption on the error term (normality). What does $\hat{\beta}_{QML}$ converge to (in probability) as $n \to \infty$?