ECON220C Discussion Section 2 From Pooled OLS to Fixed Effect Model

Lapo Bini

Before Starting

Review var/cov matrix

$$\sqrt{n} \left(\hat{\beta}_{OLS} - \beta \right) \xrightarrow{d} \mathcal{N} \left(0, E[x_i x_i^T]^{-1} E[u_i^2 x_i x_i^T] E[x_i x_i^T]^{-1} \right)$$

- 1. Some notation
- 2. Consistency of Pooled OLS
- 3. Fixed Effect model
- 4. Consistency of $\hat{\beta}_{FE}$
- 5. Exercise: IV and FE model.

New notation

 $\begin{aligned} x_{it} &= (x_{it1} \dots x_{itk}) \text{ is a } 1 \text{ x}k \text{ vector, here } \text{k is the number of covariates.} \\ X_i &= \begin{bmatrix} \leftarrow & x_{i1} & \rightarrow \\ & \vdots & \\ \leftarrow & x_{iT} & \rightarrow \end{bmatrix} \text{ is a } T \text{ x}k \text{ matrix with all } i^{th}\text{-individual observations.} \\ Y_i &= \begin{bmatrix} x_{i1} \\ \vdots \\ y_{iT} \end{bmatrix} \text{ is a } T \text{ x1 vector.} \end{aligned}$

You can go further and stack all X_i and Y_i into **X** and **Y**

Model $y_{it} = x_{it}\beta + \varepsilon_{it}$, we can estimate β by minimization of mean squared error as usual.

$$\hat{\beta}_{POLS} = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} x_{it}^{T} x_{it}\right)^{-1} \left(\sum_{i=1}^{n} \sum_{t=1}^{T} x_{it}^{T} y_{it}\right)$$
$$\hat{\beta}_{POLS} = \left(\sum_{i=1}^{n} X_{i}^{T} X_{i}\right)^{-1} \left(\sum_{i=1}^{n} X_{i}^{T} Y_{it}\right)$$
$$\hat{\beta}_{POLS} = \left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \left(\mathbf{X}^{T} \mathbf{Y}\right)$$

Pooled OLS

Consistency

Given $y_{it} = x_{it}\beta + \varepsilon_{it}$, we estimate β by Pooled OLS. Under what conditions on x_{it} and u_{it} is the estimator consistent? *Hint: write Pooled OLS formula* and substitute Y_i .

Structure in the error term

- Issue: we have two types of error: $\varepsilon_{it} = \alpha_i + u_{it}$.
- We will assume that $E[u_{it}x_{it}] = 0 \quad \forall t \text{ in what follows.}$
- **Random effect model**: $\alpha_i | X_i \sim (0, \sigma_{\alpha}^2)$.

Questions

- (i) Is Pooled OLS estimator consistent under the assumptions above?
- (ii) Assume $Var(u_i|X_i) = \sigma_u^2$ and $E[u_i\alpha_i|X_i] = 0$, derive the conditional variance of ε_i given X_i . Is the Pooled OLS estimator efficient?

Problem: Unobserved Heterogeneity

Answers

Different structure: now we assume that $x_i t$ and α_i are **correlated**. The model we consider is $y_{it} = x_{it}\beta + \alpha_i + u_{it}$

Get rid of α_i : we want to rewrite the model as $\tilde{y}_{it} = \tilde{x}_{it}\beta + \tilde{u}_{it}$, where ~ means transformation of the data, and then apply Pooled OLS. Different approaches:

- (a) **Within** approach: just demean LHS and RHS $\implies \tilde{y}_{it} \equiv y_{it} \bar{y}_i$
- (b) **First difference** estimator $\implies \tilde{y}_{it} = \Delta y_{it} \equiv y_{it} y_{it-1}$
- (c) Forward or backward demeaning $\implies \tilde{y}_{it} \equiv y_{it} \vec{y}_i$

Questions: let's start from the pooled OLS formula:

$$\hat{\beta}_{POLS} = \left(\sum_{i} \sum_{t} \tilde{x}_{it}^{T} \tilde{x}_{it}\right)^{-1} \left(\sum_{i} \sum_{t} \tilde{x}_{it}^{T} \tilde{y}_{it}\right)$$

- (i) Under what conditions is $\hat{\beta}_{POLS}$ consistent for β for a fixed T as $N \to \infty$ if we use the first difference or within approach?
- (ii) Under what conditions is $\hat{\beta}_{POLS}$ unbiased for β if we use the first difference or within approach?

Fixed Effect Model - Consistency

Answers

Consider a linear structural model:

$$y_{it} = x_{it}\beta + \alpha_i + u_{it}$$

where x_{it} may be correlated with α_i and $u_{is} \forall s$. There is an instrumental variable Z_{it} that is correlated with α_i but $E[u_{it}|z_{it}]$ for all *i* and *t*. Consider the following estimator:

$$\hat{\beta} = \frac{\sum_{i} \sum_{t} (z_{it} - \vec{z}_{i}) (y_{it} - \vec{y}_{i})}{\sum_{i} \sum_{t} (z_{it} - \vec{z}_{i}) (x_{it} - \vec{x}_{i})}$$

Questions

- (i) Under what condition is $\hat{\beta}$ consistent?
- (ii) Is the condition $E[u_{it}|z_{it}] = 0 \forall i, \forall t \text{ enough for consistency}?$
- (iii) Is the condition $E[u_{it}|z_{is}] = 0 \ \forall i, \ \forall t, \ \forall s = 1, \dots, t$, enough for consistency?
- (iv) Now suppose $\hat{\beta}$ is consistent, and we want to compute its standard error. Explain when you need to use the cluster-robust standard error.
- (v) Explain how you would estimate the asymptotic variance of your estimator.

Exercise: IV & FE Model (Midterm 2024)

Answers