ECON220C Discussion Section 6 M-Estimation

Lapo Bini

Roadmap

1. Refresh

2. General Consistency Theorem

3. Uniform Law of Large Numbers

4. Exercise on NLS and QMLE

Motivation

We develop a complex model that is a function of data and a parameter. The parameter is defined as the solution to the following **statistical problem**:

$$\theta = \arg\max_{c \in \Theta} M(c)$$

where $M(\cdot)$ is the **population criterion function**. What criterion functions do we use in econ?

- 1. **Loglikelihood**: $\{x_1, \ldots, x_n\} \sim \mathcal{L}_{\theta}, \ \theta \in \Theta \text{ then } M(c) = E[log(f(x_i; c))]$
- 2. **Distance/error**: we have our predictive model $g(x_i; \theta)$ and observed outcomes $\{y_i\}_{i=1}^n$, we maximize the negative expected prediction error: $M(c) = E[\rho(y_i g(x_i; c))]$

1

Goal & Procedure

Goal: study the properties of an estimator that has no closed-form solution: consistency, asymptotic distribution, and asymptotic variance.

- 1. Replace the population criterion function with the **sample analogue**: $\hat{\theta} = \arg \max_{c \in \Theta} M_n(c)$.
- 2. Take **FOC** and **SOC** to derive the empirical score equation and empirical hessian.
- 3. **Taylor expansion** of first order around the true parameter θ .
- 4. Check and apply the **consistency** property of $\hat{\theta}$. Remember: $M_n(c) \stackrel{p}{\rightarrow} M(c)$ is not sufficient for $\hat{\theta} \stackrel{p}{\rightarrow} \theta$. Convergence involves two directions: $M_n(\hat{\theta}) \stackrel{p}{\rightarrow} M(\theta)$

General Consistency Theorem

Consider the setting:

$$\theta = \arg \max_{c \in \Theta} M(c)$$
 and $\hat{\theta} = \arg \max_{c \in \Theta} M_n(c)$

with Θ parameter space, if the following conditions hold:

- 1. **Identification**: $\forall \delta > 0$, $\exists \varepsilon > 0$ s.t. if $\|c \theta\| > \delta$ then $M(c) < M(\theta) \varepsilon$
- 2. Uniform Convergence: $\sup_{c \in \Theta} ||M_n(c) M(c)|| \xrightarrow{p} 0$

Then we have the following result:

$$\hat{\theta} \xrightarrow{p} \theta$$

General Consistency Theorem

Identification

Uniform Convergence

Uniform Law of Large Numbers

Let $m: \mathcal{X} \times \Theta \to \mathbb{R}$, with Θ parameter space, consider the setting:

$$\theta = \arg \max_{c \in \Theta} E[m(x_i; c)]$$
 and $\hat{\theta} = \arg \max_{c \in \Theta} \frac{1}{n} \sum_{i=1}^{n} m(x_i; c)$

if the following conditions hold:

- 1. Parameter space Θ is **compact**
- 2. Function $m(x_i; c)$ is **continuous** in the second argument
- 3. $E[\sup_{c \in \Theta} ||m(x_i; c)||] < \infty$ (envelope condition)

Then we have the following results

- (i) $M_n(c) \xrightarrow{u} M(c)$
- (ii) $M(c) = E[m(x_i; c)]$ is continuous.

Exercise (I/IV)

Suppose the observations $\{y_i, x_i\}_{i=1}^n$ are generated independently from the binary probability model:

$$y_i = 1\{x_i^T \beta + u_i > 0\}$$

where $u_i \perp x_i$ and $u_i \sim \mathcal{N}(0, 1)$. Questions:

- (1) Prove that $E[y_i|x_i] = \Phi(x_i^T \beta)$
- (2) Let $m(x_i; \beta) = E[y_i|x_i]$, consider the following non linear least square estimator: $\hat{\beta}_{NLS} = \arg\max_{c \in \Theta} -(1/n) \sum_i [y_i m(x_i; c)]^2$. Under what conditions is $\hat{\beta}_{NLS}$ consistent for β ?
- (3) Under the standard normal assumption on u_i , what is the functional form of $m(x_i; c)$? Verify the consistency requirements.

Exercise (II/IV)

Suppose the observations $\{y_i, x_i\}_{i=1}^n$ are generated independently from the binary probability model:

$$y_i = 1\{x_i^T \beta + u_i > 0\}$$

where $u_i \perp x_i$ and $u_i \sim \mathcal{N}(0, 1)$. Questions:

- (4) Now consider $\Lambda(x_i; \beta) = 1/[1 + exp\{-x_i\beta\}]$, and define the non linear least square estimator: $\tilde{\beta}_{NLS} = \arg\max_{c \in \Theta} -(1/n) \sum_i [y_i \Lambda(x_i; c)]^2$. Where is $\tilde{\beta}_{NLS}$ converging to? In what sense is $\Lambda(x_i; \beta)$ close to $m(x_i; \beta)$?
- (5) Next consider the QMLE estimator under the specification that $u_i|x_i \sim \mathcal{L}$ with CDF defined as $F_{U|X}(u|x) = 1/[1 + exp\{-u_i\}] \equiv \Lambda(u)$. Write down the maximization problem and the criterion function.

7

Exercise (III/IV)

Suppose the observations $\{y_i, x_i\}_{i=1}^n$ are generated independently from the binary probability model:

$$y_i = 1\{x_i^T \beta + u_i > 0\}$$

where $u_i \perp x_i$ and $u_i \sim \mathcal{N}(0, 1)$. Questions:

- (6) Derive the score function, the variance of the score function, and the Hessian, for the value β_0 that maximizes the likelihood function. Note that $\Lambda'(u) = \Lambda(u)(1 \Lambda(u))$
- (7) Is $\hat{\beta}_{QMLE}$ consistent for the parameter that maximize the likelihood function β_0 ?
- (8) Derive the Asymptotic linear representation $\sqrt{n} \left(\hat{\beta}_{QMLE} \beta_0 \right) = \dots$

Exercise (IV/IV)

Suppose the observations $\{y_i, x_i\}_{i=1}^n$ are generated independently from the binary probability model:

$$y_i = 1\{x_i^T \beta + u_i > 0\}$$

where $u_i \perp x_i$ and $u_i \sim \mathcal{N}(0, 1)$. Questions:

(9) Do you think that the probability limit of $\hat{\beta}_{QMLE}$ is the same as that of $\tilde{\beta}_{NLS}$?

Answer