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Abstract

This paper establishes global supply chain shocks as key drivers of business cycle fluc-
tuations, introducing a novel identification strategy based on the narrative analysis of
price surcharges from the three largest container shipping companies. Negative shocks
cause a persistent rise in consumer prices and a prolonged decline in economic activity.
The response is broad-based. Sectoral impacts vary with exposure to global supply
chains, measured by the share of inputs sourced from abroad. Spillovers extend to non-
tradable sectors. These shocks accounted for up to 51% of the post-pandemic inflation.
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1 Introduction

The surge in post-pandemic inflation in the United States has sparked an intense debate over

its primary causes, with recent literature converging on two broad explanations: demand-

driven and supply-driven forces. Several studies, including Giannone and Primiceri (2024)

and Bergholt et al. (2024), attribute the price surge to strong pent-up demand, while Jordà

and Nechio (2023) emphasize the inflationary impact of direct fiscal transfers. Notably,

Hazell and Hobler (2024) estimate that massive fiscal stimulus contributed to a 22–38%

increase in the US price level between 2021 and 2022. On the supply side, Bernanke and

Blanchard (2023, 2024) identify shocks to energy and food prices, alongside widespread

supply disruptions in key sectors, as key inflationary drivers. High-profile events such as

the Suez Canal blockage in March 2021 and China’s zero-COVID policy, which effectively

paralyzed some of the world’s busiest ports, have highlighted the fragility of global supply

chains. As a result, both the academic literature and policymakers (Tenreyro, 2021; Lane,

2022) increasingly recognize global supply chain shocks as significant contributors to the

post-pandemic inflation.

This growing consensus has fueled a broader research agenda aimed at understanding

the macroeconomic consequences of global supply chain shocks and their role in driving

business cycle fluctuations. A major step in this direction was the development of the Global

Supply Chain Pressure Index (GSCPI) by Benigno et al. (2022), which quantifies global

bottlenecks using shipping costs, delivery times, and business survey data. Similarly, Bai

et al. (2024) introduce a supply chain congestion index based on spatial clustering algorithms

to track real-time delays in major ports. Most studies combine these and other indices with

structural vector autoregressive (SVAR) models and rely on sign restrictions (Brinca, Duarte

and Faria-e Castro, 2021; Bai et al., 2024), narrative-sign restrictions (Finck and Tillmann,

2022; Gordon and Clark, 2023; De Santis, 2024; Ascari, Bonam and Smadu, 2024), or a

few exogenous events (Carrière-Swallow et al., 2023) to estimate the dynamic causal effects

of supply chain shocks. The prevailing consensus is that global supply chain shocks have
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persistent effects on consumer prices, although their impact on the real economy and their

precise contribution to the post-pandemic inflation remain subjects of ongoing debate.

However, a key challenge in this literature is that variables such as commodity prices,

delivery times, shipping costs, and port congestion are all endogenously influenced by global

economic activity (Kilian, 2009; Kilian and Zhou, 2018; Baumeister and Hamilton, 2019;

Alquist, Bhattarai and Coibion, 2020; Delle Chiaie, Ferrara and Giannone, 2022; Baumeister,

Korobilis and Lee, 2022). This complicates causal inference, as these indicators conflate the

effects of supply chain disruptions with those of other macroeconomic shocks. Moreover,

identifying truly exogenous supply chain disruptions is inherently challenging, given their

diverse and global nature, which encompasses extreme weather events, labor strikes, port

closures, geopolitical conflicts, and piracy.

In this paper, I propose a new identification strategy for global supply chain shocks by

narrative analysis of price surcharge announcements from the three largest containerized

shipping companies, which collectively hold nearly 50% of the market share and up to 70%

through strategic alliances. I collect approximately 7,000 daily price and surcharge updates

published on their websites from 2014 to 2024, focusing exclusively on five key regions: Eu-

rope, the Middle East and Sub-Indian Continent, East Asia, Oceania, and North America.

These updates range from general freight increases to other extraordinary surcharges influ-

enced by supply and demand dynamics, expectations, and strategic behavior. While the

announcements often reflect both supply and demand factors, when surcharges arise from

extraordinary, unpredictable events, the companies frequently cite explicit reasons. Using a

keyword-based algorithm adapted from Baker, Bloom and Davis (2016), I first isolate a sub-

set of 369 surcharge announcements that contain terms objectively associated with exogenous

supply-side events, such as strikes, natural disasters, armed conflicts, piracy and operational

disruptions. I then conduct a narrative analysis of these announcements, cross-validating

them with external sources, in an adaptation of the narrative identification strategy widely

employed in the study of oil shocks (Hamilton, 1985, 2003; Caldara, Cavallo and Iacoviello,
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2019), monetary policy shocks (Romer and Romer, 2004; Aruoba and Drechsel, 2024), and

fiscal shocks (Ramey and Shapiro, 1998; Romer and Romer, 2010; Ramey, 2011). This

process allows me to identify 62 exogenous supply chain disruptions, measured as price sur-

charges in US dollars per Forty-foot Equivalent Unit (FEU) dry container. Some represent

large-scale disruptions that impact cargo flows through major maritime chokepoints, such

as the Suez and Panama Canals, the Bab el-Mandeb Strait, and the Strait of Hormuz, or

affect all ports along key global trade routes, including the Trans-Pacific, East–West, and

Trans-Atlantic routes. Others are more localized in scope, including disruptions at some of

the world’s busiest ports, among others, Shanghai, Ningbo, Los Angeles–Long Beach, Nhava

Sheva, and Colombo, as well as disruptions affecting all ports within a country, as in the

case of nationwide transport strikes.

Using the FEU price surcharges as an external instrument in a Proxy-SVAR framework,

I estimate the dynamic causal effect of global supply chain shocks on the US economy, both

at aggregate and sectoral levels. My findings reveal that these shocks are stagflationary,

leading to a persistent rise in consumer prices and a more persistent economic slowdown than

previously thought, marked by reduced industrial production and elevated unemployment. In

line with standard New Keynesian cost-push dynamics, these disruptions raise transportation

costs and impair the delivery of intermediate goods, which raises firms’ marginal costs. This

reduces profit margins, causing firms to scale back production and lower labor demand,

which raises unemployment and drives consumer price increases through nominal friction

mechanisms.

At the sectoral level, I find declines across all production sectors, with sustained increases

in all consumer price categories. Sectoral output dynamics mirror aggregate responses: an

initial decline, peaking within the first few quarters, and a gradual return to steady state

over three years. However, the magnitude of these effects varies across sectors. A sector’s

exposure to global supply chains, measured by the share of intermediate inputs imported

from abroad (Baldwin, Freeman and Theodorakopoulos, 2023), explains this heterogeneity.
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I find that greater exposure is associated with more severe production declines. Moreover,

sectors that experience the largest output reductions also exhibit the most significant and

persistent pass-through to consumer prices. Importantly, I also document significant spillover

effects into non-tradable service sectors. Although services are not directly exposed to global

supply chains, they respond to the slack created by the broader decline in the production

side of the economy. As the contraction deepens, service activity and employment decline

with a lag, and the magnitude of the response is more muted compared to the tradable

sector.

My sectoral analysis highlights why global supply chain shocks differ fundamentally from

other cost-push shocks, such as oil supply shocks, undoubtedly the most studied in the

literature. Oil shocks generate highly heterogeneous sectoral production responses, driven

by factors like energy intensity in production, energy intensity of the goods produced, and

demand substitutability (Davis and Haltiwanger, 2001; Hamilton, 2003; Herrera, Lagalo and

Wada, 2011). Most industrial sectors show limited output responses to oil shocks, with

price effects varying: some consumer price categories exhibit persistent increases, others are

transitory, and some remain unaffected (Tenreyro, 2022; De Santis, 2024). In contrast to

oil supply shocks, whose effects can be mitigated through the Strategic Petroleum Reserve

or via the International Energy Agency cooperation, global supply chain disruptions lead to

widespread output losses due to the physical unavailability of intermediate inputs sourced

from abroad. This type of risk is fundamentally unhedgeable. While firms may receive

monetary compensation for delays and can insure against fluctuations in shipping costs, they

cannot insure against the missing deliveries of intermediate inputs, which disrupts production

across all sectors. This results in persistent, broad-based CPI increases, with many categories

still elevated four years post-shock. These findings suggest a clear policy implication: while

Guerrieri et al. (2023) suggest central banks should overlook oil supply shocks due to their

transitory nature, the prolonged impact of supply chain disruptions implies that prompt

policy responses are essential to mitigate persistent inflationary pressures.
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I also contribute to the debate about the main causes of the post-pandemic inflation.

My estimates indicate that global supply chain shocks were the primary driver of inflation

in 2021, accounting for an average of 51% of the price increase. While my analysis does

not rule out the significant role of demand, it shows that global supply chain shocks were

the primary contributors in the early stage of the price surge in 2021. From 2022 onward,

other factors, such as demand forces, fiscal stimulus, and shocks to productive capacity

(Goda and Soltas, 2022; Hobijn and Sahin, 2022; Lee, Park and Shin, 2023), increasingly

shaped inflation dynamics. Nevertheless, global supply chain shocks remained a significant

force, contributing 32%, 30%, and 22% to consumer price increases in 2022, 2023, and

2024, respectively. Regarding economic recovery, these shocks exerted sustained downward

pressure, with a peak impact in November 2021, when they caused a 7.5% decline in industrial

production relative to pre-pandemic levels. In a counterfactual scenario with only global

supply chain shocks, industrial production would have required an additional 18 months to

return to pre-pandemic levels, from November 2021 to May 2023.

Beyond their role in the post-pandemic period, I show that global supply chain shocks

are a key driver of business cycle fluctuations. The identified structural shocks account for

the bulk of short- and medium-term movements in the GSCPI, as they isolate the primitive

exogenous sources behind its variation. I further find that these shocks explain more than

one-third of consumer price variability, a quarter of industrial production variability, and

about 10% of unemployment variability over the business cycle.

While finalizing this paper, I learned of Känzig and Raghavan (2025)’s measure of supply

chain disruptions constructed from high-frequency movement of the Baltic Exchange Dry

Index during exogenous events at the Panama and Suez Canals. Their instrument captures

shocks to low-value dry bulk commodities, unlike my measure, which reflects disruptions to

a wide range of high-value containerized goods spanning intermediate and final products.

Their measure also has a narrower geographic focus, excluding major trade corridors like

the Trans-Pacific, Trans-Atlantic and key Asian hubs. Given these differences, one might
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expect their estimates to confirm stagflationary effects but yield a more muted industrial

production response, and a smaller contribution to post-pandemic inflation and economic

recovery.

The remainder of the paper is organized as follows: Section 2 discusses the identification

design and the construction of the instrument. Section 3 outlines the econometric approach

and examines the propagation of global supply chain shocks at aggregate and sectoral levels.

Section 4 evaluates their cumulative impact on pandemic-era inflation and economic recovery.

Section 5 assesses the quantitative role of global supply chain shocks as drivers of business

cycle fluctuations. Section 6 performs some robustness checks, and Section 7 concludes.

2 Narrative Identification

The identification strategy builds on the narrative analysis of surcharge announcements from

the world’s three largest shipping companies. When confronted with exogenous disruptions

that increase operational costs, shipping companies respond by imposing price surcharges

on shippers. The idea is to construct a series of price surcharges correlated exclusively with

exogenous supply-side disruptions that will serve as an external instrument in a SVAR frame-

work to structurally identify the unobserved global supply chain shocks. Before detailing

the procedure for identifying such disruptions, I first provide evidence on the container-

ized shipping market’s oligopolistic structure and the role played by price surcharges in the

measurement and transmission of shocks across the supply chain network.

2.1 The Containerized Shipping Industry

From 2014 to 2024, the containerized shipping industry was dominated by three major al-

liances: the 2M Alliance, formed by Mediterranean Shipping Company (MSC) and A.P.

Møller–Mærsk A/S (Maersk); the Ocean Alliance, comprising Compagnie Maritime d’Af-

frètement–Compagnie Générale Maritime (CMA CGM), COSCO, and Evergreen; and THE
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Alliance, including Hapag-Lloyd, Ocean Network Express (ONE), Yang Ming Marine Trans-

port Corporation, and Hyundai Merchant Marine (HMM). These alliances collectively con-

trolled approximately 80-90% of global container shipping capacity by the early 2020s, re-

flecting the concentrated structure of the industry and enabling carriers to coordinate vessel

deployment, share terminal infrastructure, and reduce route duplication, thereby achieving

significant economies of scale. High fixed costs, substantial barriers to entry, and the need

for globally integrated service networks reinforced market power among a small group of

dominant carriers. The three largest shipping companies, MSC, Maersk, and CMA CGM,

together account for nearly 50% of the global container shipping market, with operations

that span all major trade corridors, from Asia to Europe, North America, and beyond.

Crucially, the interconnectedness of major trade lanes, including the East-West, Trans-

Pacific, and Trans-Atlantic corridors, effectively creates a de facto single global shipping

route. Vessels routinely interconnect at major hubs such as Singapore, Shanghai, Rotter-

dam, and Los Angeles–Long Beach, transforming the global network into an integrated and

interdependent system (Fan, Wilson and Dahl, 2012). As a result, disruptions in one region,

such as the 2021 Suez Canal blockage or the 2022 Shanghai port backlog, quickly reverber-

ated across the entire network, generating ripple effects on capacity, schedules, and freight

pricing worldwide.

Within this tightly interconnected system, shipping companies respond to demand or

supply shocks by imposing price surcharges on shippers. These surcharges serve as a key

mechanism to recover rising operational costs and, at the same time, to rebalance container

flows by disincentivizing shipments into already congested or container-saturated regions.

However, because surcharges are typically applied across entire trade lanes, a localized dis-

ruption, originating in, say, a single port or country, can lead to system-wide price increases,

affecting routes far removed from the original shock. In this way, price surcharges function

as transmission vehicles: they not only quantify the magnitude of the disruptions but also

propagate the increasing operational costs across multiple trade lanes through the combined
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forces of oligopolistic power and network interdependence. MSC, MAERSK, and CMA CGM

published more than 7,000 price and surcharge updates on their websites between Febru-

ary 2014 and December 2024, reflecting changes in container shipping costs across a wide

range of global routes and ports. I will now describe the methodology used to isolate exoge-

nous supply-side disruptions to the global supply chain from the narrative record of price

surcharges.

2.2 Identifying Exogenous Disruptions

Methodology.— To construct a narrative-based measure of exogenous global supply chain

disruptions, I begin by systematically collecting price surcharge announcements from the

websites of the three largest container shipping companies. Specifically, I compile 1,218 sur-

charges from MSC (February 2014–December 2024), 2,450 from Maersk (March 2019–Decem-

ber 2024), and 3,222 from CMA CGM (March 2015–December 2024). These announcements

include various surcharge types, often accompanied by textual justifications provided by the

carriers themselves.

I focus exclusively on surcharges related to the three major trade routes, Trans-Pacific,

East-West and Trans-Atlantic corridors, which form a unified global shipping network. I

exclude routes serving South America and West Africa, as well as surcharges involving ports

with annual throughput below 250,000 FEUs, which are less relevant for capturing globally

systemic disruptions.

To isolate surcharges only related to exogenous supply-side disruptions, I adopt a keyword-

based algorithm adapted from Baker, Bloom and Davis (2016). Using a pre-defined list of

terms associated with operational failures, labor strikes, natural disasters, geopolitical con-

flicts, and partial or full blockages of maritime chokepoints with consequent re-routing (see

online Appendix B), I isolate a subset of 369 surcharge announcements that contain one or

more terms plausibly linked to unpredictable supply-side disruptions.

Following this automated screening, I conduct a narrative analysis of the explanation
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accompanying each of the 369 candidate surcharge announcements to verify that it reflects

an exogenous supply-side disruption unrelated to broader macroeconomic or demand-driven

forces. When the textual description is insufficiently detailed, I cross-validate the announce-

ment using external sources such as local newspapers, industry blogs, and port authority

statements.

Applying the criteria.— For illustration, I include below a price surcharge announcement

published by Maersk on January 8, 2024, which suspended transit through the Red Sea due

to multiple Houthi rebel attacks on commercial vessels, rerouted vessels via the Cape of

Good Hope, and introduced a Transit Disruption Surcharge (TDS):

08 January 2024 – Transit Disruption Surcharge

As we have been communicating since mid-December/23, Maersk is continuing

monitoring developments around the Red Sea / Gulf of Aden and making carefully

considered changes to services to ensure the safety of our seafarers, vessels and

customers’ cargo.

The situation is constantly evolving and remains highly volatile, and all available

intelligence at hand confirms that the security risk continues to be at a signifi-

cantly elevated level. We have therefore decided that all Maersk vessels due to

transit the Red Sea / Gulf of Aden will be diverted south around the Cape of Good

Hope for the foreseeable future.

By suspending voyages through the Red Sea / Gulf of Aden, we hope to bring our

customers more consistency and predictability despite the associated delays that

come with the re-routing.

The previously announced surcharges for all cargo on vessels affected by the

disruptions around the Red Sea / Gulf of Aden remain in effect:

Transit Disruption Surcharge effective as from actual sailing date 10/01/2024
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until further notice.

To give you as much clarity and predictability as possible, TDS will apply only

to bookings confirmed as from 21/12/2023 (global announcement date) and de-

parture date as from 10/01/2024 onwards.

TDS - USD per container 20DRY 40DRY 40HREF
All shipments diverted from Suez 200 400 450

The narrative analysis of the surcharge establishes its exogenous supply-side cause. When

the announcements lack explicit reasons for the surcharge, I complement the narrative anal-

ysis of the announcement with external sources to assess whether an exogenous supply-side

disruption is plausibly the cause of the surcharge. For example, CMA CGM introduced a

Port Congestion Surcharge (PCS) on March 27, 2023, for shipments departing from Mersin,

Turkey:

27 March 2023 – PCS in Mersin, Turkey

We inform our customers that we are experiencing important delays in Mersin,

Turkey between congestion/waiting time plus berth time on the current vessels

berthing sequences with following impacts: (i) laden cargo lead-time is being

increased; (ii) empty equipment re-loading / repositioning frequency is affected;

(iii) operating costs are increased.

In this respect please be informed that CMA CGM will be implementing a Port

Congestion Surcharge in Mersin as follows:

- From: Mersin, Turkey

- To: Mediterranean & Adriatic, Black Sea, North Africa & Portugal, South

America, Central America & Caribbean, Mexico West Coast, Windward,

Guyana North Brazil, Middle East Gulf, Red Sea, North & South East

Asia, China, Hong Kong SAR
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- Cargo: Dry

- Applicable from: March 27th, 2023, loading date (April 25th, 2023 for

Puerto Rico)

- Amount: USD 100 per TEU

Although CMA CGM did not specify the reason for the PCS, I classify this surcharge as a

response to an exogenous supply-side disruption. Several sources confirmed that the cause

of the surcharge was a devastating 7.8-magnitude earthquake that struck southern Turkey

in February 2023, causing extensive damage to port infrastructure and regional road net-

works.1 Trucking activity around Mersin was largely disrupted, and the major nearby port

of Iskenderun ceased operations due to fire damage caused by the earthquake. As a result,

vessels were rerouted to Mersin, leading to increased delays and congestion.

Morphology of exogenous disruptions.— Overall, the narrative analysis leads to the iden-

tification of 62 exogenous disruptions. Among these, 14 events involve major maritime

chokepoints, where disruptions affect all trade routes transiting through them. These in-

clude four weather-related disruptions at the Panama Canal, driven by prolonged drought

and reduced water levels; four operational disruptions at the Suez Canal, caused by the

2021 grounding of the Ever Given and other blockage-related incidents; one conflict-related

disruption in the Strait of Hormuz, linked to an Iranian attack on two oil tankers; and four

war-related events at the Bab el-Mandeb Strait, all stemming from Houthi rebel attacks

and the broader civil conflict in Yemen. Beyond chokepoints, 8 additional events involve all

ports along major trade corridors. These include disruptions on routes connecting Far East

Asia (China, Taiwan, Hong Kong) to the United States and Europe, as well as five events

along the Trans-Atlantic corridor, primarily caused by low water levels in the St. Lawrence
1See: Portcast (2023): Impact of Türkiye–Syria Earthquake on the Shipping Industry, Fox Busi-

ness (2023): Earthquake Sparks Massive Shipping Container Fire, and Reuters (2023): Iskenderun Port
Operations Halted After Earthquake-Induced Fire.
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Seaway. An additional 13 disruptions affect broader macro-regions, involving multiple ports

or inland transport systems within the same country or trade area. These include, among

others, a nationwide breakdown in India’s inland transport system due to truck driver short-

ages; widespread disruptions across dry ports in the United States; strikes in southern France

and nationwide in Spain; labor unrest in northern European ports (Le Havre and Dunkirk);

operational challenges across all UK ports; and war-related disruptions to all Black Sea trade

ports following Russia’s invasion of Ukraine. Finally, 27 events are localized at individual

ports, including high-traffic terminals such as Shanghai, Ningbo, Los Angeles–Long Beach,

Felixstowe, Nhava Sheva, and Colombo, affected by either operational failures or strikes.

Operational War/Conflict Strike Weather/Natural Disaster

Figure 1: Sea and Dry Ports Involved in Congestions and Other Disruptions.

These disruptions are classified into four categories based on their underlying cause:

operational, war and conflict, strikes, and extreme weather or natural disasters. Figure 1

illustrates the global distribution of identified supply chain disruptions, with each event

categorized by its underlying cause. For disruptions affecting entire trade routes, only the

busiest ports, measured by annual container throughput in FEUs, are shown to preserve
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visual clarity.

Operational disruptions, comprising nearly 53% of the total (33 events), include truck

driver shortages, new port regulations increasing vessel and container processing times, in-

frastructure failures (e.g., crane breakdowns or bridge collapses), and full or partial blockages

of strategic chokepoints. War and conflict-related disruptions account for 18% of events and

involve port closures due to hostilities, particularly in the Middle East, and suspensions of

trade routes in war zones, such as the Black Sea. Strikes represent 11% (7 events), compris-

ing labor actions that affected port operations either locally or nationally. Finally, natural

disasters and extreme weather events, including exceptionally low water levels in the St.

Lawrence seaway, the El Niño phenomenon impacting the Panama Canal, and the devas-

tating earthquake in Turkey, constitute the remaining 18% of the total disruptions. An

overview of all surcharge dates and data sources can be found in the online Appendix B.

2.3 Construction of the Instrument

Size and timing.— Building on the previously identified exogenous disruptions and their

associated price surcharges, I now proceed with the construction of the narrative-based time

series. For each disruption event, I first compute the average surcharge across affected trade

lanes and shipping companies. These event-level averages are then aggregated within the

month in which the surcharges were implemented, producing a cumulative monthly surcharge

series measured in US dollars per FEU container.

In most cases, surcharges are applied either immediately or within the same month as the

corresponding announcement. When implementation occurs in the following month, I as-

sign the surcharge to the month of the implementation. This choice is motivated by several

factors. Unlike central banks or institutions such as OPEC, shipping companies commu-

nicate pricing decisions less clearly and with limited coordination. Moreover, there is no

evidence that market participants actively monitor or react to these announcements in real

time. Even if such monitoring were to occur, substituting containerized ocean freight with
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alternative modes of transport, such as air freight, is both costly and logistically challenging.

In addition, the contractual terms of container shipping are typically fixed well in advance,

often for periods exceeding one year, further limiting the scope for anticipatory adjustments.

These features of the industry imply that the demand for containerized shipping is relatively

inelastic in the short run and that news effects are minimal. In the few cases where different

carriers issue surcharges related to a single event across two consecutive months, I assign

the event to the later month if most implementations occur after the midpoint of the earlier

month.

The price surcharge series.— Figure 2 displays the resulting time series of price sur-

charges, expressed in US dollars per FEU dry container. This series represents a partial

but timely measure of cumulative, exogenous supply-side disruptions in the global shipping

network. Constructed at a monthly frequency over eleven years, it contains 46 non-zero ob-

servations corresponding to 62 individually identified disruption events. Of these, 19 events

(approximately 40 percent) occurred before January 2020. It is worth noting that price

surcharge data from Maersk are only available from January 2019 onward.

Among the identified exogenous price surcharges, only three negative values appear,

each reflecting unexpected improvements in shipping conditions. These include the removal

of the port congestion surcharge in Yemen in April 2018, following a UN-led conference

that secured $2 billion in aid and introduced an economic plan to enhance humanitarian

access and logistics; infrastructure upgrades at Shuwaikh Port in Kuwait in June 2019,

where rapid progress on a berth development project reduced congestion and delays; and

improvements in inland transportation and dry port operations in India in February 2023,

where recent legislative reforms in customs and logistics policy spurred investment in freight

infrastructure and centralized warehousing, including the completion of over 1,700 kilometers

of high-capacity Dedicated Freight Corridors.

The largest positive surcharge, 1,340 dollars, was recorded in December 2020, driven by
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multiple concurrent shocks: a second wave of COVID-19 severely reduced port and trucking

labor availability in the United States and the United Kingdom; newly introduced sanitation

protocols for container handling in both countries further lengthened operational times; and

the escalation of the Yemeni conflict caused additional disruptions in the Bab el-Mandeb

Strait.

Figure 2: The Dry FEU Price Surcharge Series.

Overall, the FEU price surcharge series closely aligns with major narrative episodes of dis-

ruption. Figure 2 highlights several major events in the container shipping network. These

annotated episodes span each of the four disruption categories defined earlier: geopolitical

conflict (e.g., the Yemeni civil war and Black Sea trade restrictions), operational failures (the

August 2021 shutdown of Ningbo’s Meishan terminal due to a COVID-19 outbreak), extreme

weather events (e.g., El Niño-related congestion in the Panama Canal and low water levels

in the St. Lawrence River), and labor strikes (e.g., the nationwide strike in France affecting

all forms of transport). While these events represent only a subset of the 62 disruptions

identified through the narrative analysis, they demonstrate that the FEU price surcharge
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series aligns closely with widely recognized, unpredictable supply chain disruptions.

Diagnostics— I perform a series of diagnostic checks on the FEU price surcharge se-

ries, examining autocorrelation, Granger causality in relation to a series of macroeconomic

variables, and correlation with other structural shocks, following the approach outlined in

Ramey (2016). I find no evidence of serial correlation: the p-value for the Ljung–Box Q-

statistic testing whether all autocorrelations up to lag 20 are jointly zero is 0.39. I also

find no evidence that the FEU price surcharge series is forecastable using a set of macroeco-

nomic variables and other indicators that capture global uncertainty, trade, and geopolitical

risk. The p-values from the Granger causality tests are well above conventional significance

thresholds. Finally, I verify that the series is uncorrelated with other structural shock mea-

sures commonly used in the literature, including oil demand shocks, global economic activity

shocks, and monetary policy shocks. All the results are available in the online Appendix A.

In Section 6, I further demonstrate that the results are not driven by any specific indi-

vidual or subset of events. In particular, the main findings remain unchanged when exclud-

ing each disruption category individually, operational disruptions, wars and conflicts, labor

strikes, and extreme weather events, as well as when excluding all COVID-related events.

3 Global Supply Chain Shocks & Business Cycle

The FEU price surcharge series can be seen as a partial measure of the unobserved global

supply chain shock. Provided that this narrative-based series is correlated with the global

supply chain shock and uncorrelated with other structural shocks affecting the economy, I

use it as an external instrument within a Vector Autoregression (VAR) framework. This

approach, also known as a Proxy-SVAR or SVAR-IV, focuses exclusively on identifying

the structural shock of interest and builds on the extensive literature on the identification of

structural VARs using external sources of exogenous variation, as developed by Stock (2008),
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Mertens and Ravn (2013), Stock and Watson (2018), and Montiel Olea, Stock and Watson

(2021).

3.1 Econometric Framework

Consider the stationary reduced-form VAR(p) model:

yt = Πxt−1 + εt. (1)

The k x 1 vector xt−1 = (1,y′
t−1, . . . ,y

′
t−p)

′ contains an intercept and p lags of each of

the variables (k = 1 + pn) and εt is an n x 1 vector of reduced form innovations such

that εt ∼ (0,Ω). The n x k matrix of reduced-form coefficients Π is estimated by OLS.

I now assume that the model is invertible, i.e. the reduced-form innovations are a linear

combination of the structural shocks:

εt = A−1ut. (2)

where A−1 is the n x n structural impact matrix and ut is the n x 1 vector of mutually

uncorrelated structural shocks, i.e. ut ∼ (0,D), where D = diag(d11 . . . dnn). In Section 6,

I formally test the invertibility assumption using the procedures outlined in Plagborg-Møller

and Wolf (2022) and Hamilton (Forthcoming), and fail to reject the null hypothesis of in-

vertibility for the baseline empirical model. The invertibility assumption implies

Ω = A−1D(A−1)′. (3)

Since the VAR is stationary, (1) yields a VMA(∞) representation of the form

yt =
∞∑
h=0

Ψhεt−h. (4)
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where the weights Ψh are functions of the reduced-form coefficient matrix Π. Given the

invertibility assumption, I obtain the structural vector moving average representation

yt =
∞∑
h=0

ΨhA
−1Aεt−h =

∞∑
h=0

Θhut−h. (5)

where Θh = ΨhA
−1 is the n x n matrix of structural responses to the vector of structural

shocks that happened h periods before. Without loss of generality, I order the global supply

chain shock as the first element (u1t) of the vector of structural shocks ut; therefore, I aim

to identify the first column of A−1, denoted by the vector h1.

Inference via External Instrument.— The identification strategy consists of using the

stationary series of FEU price surcharges (Zt) as external instrument. The instrument must

be relevant

E[Ztu1t] = α 6= 0 (6)

and it must be exogenous to the other structural shocks

E[Ztu2:nt] = 0. (7)

Here u2:nt = (u2t . . . unt)
′ is the (n− 1) x 1 vector of all the other structural shocks. Under

the two conditions above and the invertibility assumption, the structural impact vector h1

is identified up to a constant of proportionality (Stock and Watson, 2016; Baumeister and

Hamilton, 2024). I resolve the scale ambiguity by defining an increase in the structural shock

u1t as an event that raises the observed variable y1t by δ units

h̃1 = (E[Ztε2:nt]/E[Ztε1t]) × δ (8)

subject to Ω = A−1D(A−1)′. Thus, if h̃1 is identified and the VAR is invertible, the struc-

tural shock u1t and its variance d11, and the forecast error variance decomposition are also
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identified.

Estimation with COVID.— The inclusion of 2020 data poses substantial challenges when

estimating the model. Following Lenza and Primiceri (2020), I conceptualize COVID as a

regime in which the innovation variance of the VAR is scaled up, while the autoregressive

dynamics are unchanged. Formally, I define a regime indicator st ∈ {1, 2}, where st = 1

denotes normal times and st = 2 denotes the COVID period. The autoregressive coefficients

of the VAR are held constant across regimes, Π1 = Π2 = Π, but there is a marked scale-up

in the innovation variance, Ω2 = κ2 Ω1, which generates large outliers. To implement this, I

adopt a feasible Generalized Least Squares (GLS) iterative estimation procedure as suggested

in Hamilton (Forthcoming), where the observations in the COVID sample are downweighted

by the scaling factor κ, which is in turn estimated via Maximum Likelihood Estimation

κ2 =
1

T2k

T∑
t=1

(yt −Πxt−1)
′ Ω−1

1 (yt −Πxt−1)1{st = 2}. (9)

Here T2 is the total number of observations in the COVID regime, and k is the number of

endogenous variables considered in the model. The same procedure is applied to the two-

stage least squares estimation of the structural impact vector h̃1. In the empirical analysis,

I define the COVID regime as the period from January to December 2020.

3.2 Empirical Specification

The baseline specification of the empirical model employed in the analysis is a monthly VAR

which comprises two global variables, the Global Supply Chain Pressure Index (GSCPI),

ordered first as it serves as the instrumented variable, and the West Texas Intermediate

(WTI) oil price, along with three US variables: Consumer Price Index (CPI), industrial

production, and unemployment rate. The sample period begins in January 1998, with the

start dates determined by the availability of the Global Supply Chain Pressure Index, which
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is available no earlier than January 1998. The end of the sample is set at December 2024.

However, the first-stage estimation is conducted over the shorter period from January 2014

to December 2024, as price announcement data from the three major shipping companies

are unavailable before January 2014.

The variables in the model are transformed into logarithms multiplied by 100, with two

exceptions: the Global Supply Chain Pressure Index, which is retained in its original units

as standard deviations from the mean, and the unemployment rate, which is expressed as a

percentage. The VAR includes 12 lags.

3.3 Propagation Mechanism

I now provide evidence of the propagation mechanism of a global supply chain shock identified

via external instrument. Figure 3 shows the structural Impulse Response Functions (IRFs)

of the baseline model, normalized to a structural shock that increases the GSCPI by 0.5

units, corresponding to a $1,340 price surcharge. This $1,340 price surcharge corresponds

to the peak surcharge observed by the instrument in December 2020. To contextualize

this magnitude, a back-of-the-envelope calculation relates the $1,340 surcharge to prevailing

shipping costs. According to the Freightos Baltic Index, the average shipping cost for a

FEU container in December 2020 was approximately $2,650 across major global routes.

Thus, the $1,340 surcharge represents roughly 50% of the average shipping cost, providing a

meaningful scale for evaluating the structural shock’s magnitude. In all subsequent figures,

the 68%, 80%, and 90% confidence bands are computed using 4,000 recursive wild bootstrap

replications, in which the residuals are rescaled by independently drawn Rademacher random

variables.

After the initial increase, the GSCPI reverses back and returns to its steady state after

approximately three years. US consumer prices exhibit a sluggish and persistent increase,

consistent with a price friction mechanism, and the response is highly statistically signif-

icant. In contrast, oil prices initially decline on impact and then gradually increase over
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time; however, the response is not statistically significant at conventional levels. Turning

to real economic effects, the supply chain shock induces an immediate decline in industrial

production, which reaches its lowest point after two quarters before gradually recovering.

This response is highly statistically significant and persistent, with industrial production

returning to its steady state no earlier than three years post-shock. The unemployment rate

rises immediately, peaks after one year, and then gradually declines toward its steady state,

remaining elevated for three additional years. At the peak, a supply-chain shock associated

with a $1,340 price surcharge raises consumer prices by almost 0.4% and oil prices by 2.3%,

while reducing industrial production by 0.9% and increasing unemployment by 0.16%.

Figure 3: Structural Impulse Responses to a Global Supply Chain Shock.

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The solid line is the point estimate and the shaded areas are 68, 80 and 90 percent confidence bands,
respectively. First stage sample from January 2014 to December 2024. OLS regression: F -statistic:
18.18, R2: 12.88%, Adjusted R2: 12.17%. Feasible GLS regression to down-weight COVID period:
F -statistic: 12.54, R2: 9.25%, Adjusted R2: 8.51%.

Discussion.— At the aggregate level, a global supply chain shock functions as a cost-push

shock in the New-Keynesian framework, raising firms’ marginal costs due to higher trans-
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portation costs and shortages of intermediate inputs of production. As profit margins decline,

firms reduce production and cut back on labor demand, leading to higher unemployment.

Finally, the consumer price level rises gradually, reflecting both the pass-through of elevated

input costs and delays in the delivery of final goods to markets. The most pronounced effect

at impact is on production, which declines by 0.5%. These findings align with the theoreti-

cal predictions of Alessandria et al. (2023), who suggest that, despite the shock’s temporary

nature, it takes time for the economy to recover. Bai et al. (2024) study the macroeconomic

effects of global supply chain disruptions by employing sign restrictions on the comovements

of output, prices, and spare capacity, derived from a model that incorporates search frictions

between producers and retailers. Their analysis indicates only transitory real effects from an

adverse global supply chain shock, with contractionary impacts on real GDP and unemploy-

ment lasting no more than two quarters. While they do report persistent price increases,

these are less prolonged than those observed in my study and in Benigno et al. (2022).

3.4 Wider Effects

To gain a deeper understanding of the macroeconomic propagation of global supply chain

shocks, I examine their effects across key components of the real economy and price dynam-

ics. I analyze sectoral responses in industrial production across major subsectors, aggregate

service sector activity and employment, and consumer prices disaggregated by CPI category.

I estimate impulse response functions by incorporating each variable individually into the

baseline model, maintaining the same sample period as in the baseline specification.

Industrial production.— Figure 4 presents the IRFs for eight key industrial sectors along-

side the aggregate industrial production series. I examine the two primary components of

industrial production by industry group, manufacturing and mining, as well as the major

subcategories within manufacturing: durable and nondurable goods. Additionally, I focus

on food and beverage and motor vehicles and parts, two sectors critical for business cycle
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analysis and among the largest components of nondurable and durable goods, respectively. I

also analyze materials and final products, the two main components of industrial production

by market group. Final products are related to immediate pass-through to consumer prices,

while materials, as intermediate inputs, capture persistent second-round effects on firms’

marginal costs.

Following a global supply chain shock, all industrial production variables decline imme-

diately, reach their trough within the first few quarters, and then recover to pre-shock levels

between two and three years later. All impulse response functions are highly statistically sig-

nificant, except for mining. This exception is unsurprising: despite US reliance on imported

rare earth materials and other mining products, mining production has a localized supply

chain, resulting in a response to global supply chain shocks that is not statistically different

from zero. Manufacturing displays a sharper peak contraction than the aggregate index

(1.32% vs. 0.9%). At their respective troughs, durable goods fall more than nondurables

(1.44% vs. 0.77%), with total manufacturing lying in between. Motor vehicles and parts

exhibit the largest peak decline (4.5%), while food and beverages show the smallest (0.45%),

with a quick return to steady state. Among market groups, the peak response of materials

(1.1%) exceeds that of final products (0.95%).

To interpret the heterogeneity in response magnitudes, I employ the look-through ex-

posure metric developed by Baldwin, Freeman and Theodorakopoulos (2023). Constructed

from the OECD’s 2021 Inter-Country Input-Output (ICIO) tables, this metric measures the

proportion of manufactured inputs sourced abroad by a US manufacturing sector relative

to total inputs of production, accounting for suppliers’ own suppliers.2 Using this metric, I

construct predicted impulse responses by rescaling the headline IRF proportionally to each

sector’s relative exposure:

ĨRFi = ÎRFh × LTi

LTh

. (10)

2Baldwin, Freeman and Theodorakopoulos (2023) compute look-through exposure for 17 NAICS 31–33
manufacturing subsectors. I calculate exposure for broader manufacturing aggregates and the two market
group series, using weights from the Industrial Production and Capacity Utilization (G.17) statistical release
by the Board of Governors of the Federal Reserve System.
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Here, ÎRFh is the impulse response function of the headline series, and LTi and LTh represent

the look-through exposure for sector i and the headline, respectively.

Figure 4: The Effects of Global Supply Chain Shock on US Industrial Productions.

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The solid black line is the point estimate and the shaded areas are 68, 80 and 90 percent confidence
bands, respectively. The orange line is the predicted sectoral IRF, derived by rescaling the headline
industrial production IRF with the ratio of sectoral to headline look-through exposure measures.
All subplots share the same y-axis scale, except for Motor Vehicles and Parts.

These predicted responses, shown as orange lines in Figure 4, closely match the estimated

sectoral IRFs, affirming the role of the exposure to the global supply chain as a sufficient

statistic to explain sectoral dynamics. Manufacturing, with a look-through exposure of
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12.3%, is more exposed than the aggregate index, explaining its larger response. Durable

goods are more exposed (15%) than nondurables (9.1%), and the total manufacturing re-

sponse falls between the two, reflecting its weighted average composition. Motor vehicles and

parts, with the highest exposure (21.9%), exhibit the most severe contraction, while food and

beverages, with the lowest exposure (7.7%), experience the mildest. For food and beverages,

the predicted IRF captures the response well on impact but overstates its persistence. This

muted and short-lived response reflects the sector’s limited reliance on foreign inputs and

the prevalent use of capital goods that operate over multiple production cycles. Lastly, the

different exposure of materials (11.3%) and final products (8.6%) explains the difference in

their responses.

Services.— To assess the broader macroeconomic reach of global supply chain shocks,

I examine their impact on the non-tradable sector, specifically services. Figure 5 presents

the impulse responses of the ISM Services Activity Index, ISM Services Employment Index,

and ISM Manufacturing Production Index to a global supply chain shock corresponding to a

$1,340 price surcharge. Both services indicators exhibit no statistically significant response

on impact, consistent with the fact that services are not directly exposed to global supply

chain disruptions. However, approximately two quarters after the shock, both measures

display a significant contraction, which gradually fades, returning to pre-shock levels within

a year.

The inclusion of the ISM Manufacturing Production Index enables a meaningful struc-

tural comparison across tradable and non-tradable sectors, as all three indicators are survey-

based and measured on comparable qualitative scales. The production index exhibits a sharp

and immediate drop, capturing the direct effect of global supply chain shocks on the tradable

goods sector. In contrast, the services activity index shows a delayed and smaller contraction,

reflecting the presence of spillover effects rather than direct exposure. This dynamic, initial

inertia followed by a transitory decline, suggests that disruptions in the production sector
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generate broader macroeconomic slack, which gradually propagates into the non-tradable

sector. As conditions deteriorate, service firms adjust activity and employment accordingly.

Because these effects are indirect, the response of the services sector is both lagged and more

muted relative to that of the production sector.

Figure 5: The Effects of Global Supply Chain Shock on Non-Tradable Sector.

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The solid black line is the point estimate and the shaded areas are 68, 80 and 90 percent confidence
bands, respectively. All subplots share the same y-axis scale.

Consumer prices.— Figure 6 shows the responses of different components of CPI, includ-

ing core, services, durable and nondurable goods, food and beverages, new vehicles, housing,

and medical care, together with the headline response from the baseline model. A consis-

tent pattern emerges across all components: each category exhibits a sluggish and persistent

increase, with many remaining elevated even four years after the shock. This broad-based in-

flationary response reflects a gradual transmission from production disruptions to consumer

prices, consistent with the presence of nominal rigidities.

The core CPI response is nearly identical to the headline CPI, reflecting the broad-based

nature of the inflationary impact. This close alignment is consistent with the widespread

decline observed across core production sectors.

The services CPI component exhibits a relatively mild yet persistent increase in response

to a global supply chain shock. This inflationary pattern aligns with the observed declines in

service sector activity and employment documented in Figure 5. Given that services are only

indirectly exposed to global supply chain disruptions, the associated contraction in output is
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more limited. Accordingly, the pass-through to consumer prices is less pronounced, though

still persistent.

Figure 6: The Effects of Global Supply Chain Shock on US Consumer Prices.

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The solid black line is the point estimate and the shaded areas are 68, 80 and 90 percent confidence
bands, respectively. All subplots share the same y-axis scale.

Durable and nondurable goods exhibit markedly different inflationary responses, mir-

roring their respective production dynamics shown in Figure 4. Durables, which are more

exposed to global supply chains, experience a stronger and more persistent price increase.

This parallels the sharper and more prolonged contraction in durable manufacturing, partic-
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ularly in sectors such as motor vehicles and parts. Nondurables, with lower exposure, exhibit

a more modest price increase.

The divergence is even more pronounced when comparing food and beverages to new

vehicles. The food and beverage category, which shows the smallest production response

due to its localized supply chain structure, also displays the mildest CPI increase. By

contrast, new vehicles, embedded in a highly globalized and input-intensive supply chain,

exhibit the largest and most persistent CPI response, closely tracking the steep and extended

production decline in motor vehicles and parts.

Lastly, I include housing and medical care to illustrate how sectors that appear largely

insulated from international trade can still be affected by global supply chain disruptions.

In addition, housing is the largest component of the CPI basket, making its inflationary

dynamics particularly interesting. Both categories show persistent price increases following

the shock, underscoring the economy-wide reach of supply chain disruptions, even in sectors

not traditionally viewed as integrated in the global supply chain.

Discussion.— Sectoral responses to a global supply chain shock exhibit similar qualitative

dynamics but vary significantly in magnitude. Among production sectors, this heterogene-

ity is strongly correlated with each sector’s degree of exposure to the global supply chain.

Predicted impulse response functions, obtained by rescaling the IRF of aggregate industrial

production by relative look-through exposures, closely match the estimated sectoral dynam-

ics. This suggests that look-through exposure serves as a sufficient statistic for explaining

cross-sectoral variation. Sectors experiencing the most pronounced output contractions, such

as durable manufacturing, and in particular motor vehicles, also exhibit the strongest pass-

through to consumer prices. While all CPI components respond persistently to the shock,

durable goods and new vehicles stand out in both the size and persistence of their inflationary

dynamics.

Beyond the tradable goods sectors, I find that global supply chain shocks spill over
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into non-tradable services. Although the responses of service activity and employment are

more modest and transitory, they confirm the broader macroeconomic reach of these shocks.

Services CPI also rises persistently, reflecting higher operational costs that are gradually

passed on to consumers despite the sector’s lower direct exposure to the global supply chain.

These findings underscore what makes global supply chain shocks distinct from other

well-studied supply-side shocks, such as oil supply and oil price shocks. Whereas oil shocks

generate highly heterogeneous production effects (Tenreyro, 2022; De Santis, 2024), driven

by sector-specific energy intensity and substitution elasticities, global supply chain disrup-

tions cause widespread declines due to the physical unavailability of intermediate inputs.

These shortages are difficult to hedge and, unlike oil supply shocks, cannot be offset through

government-backed insurance mechanisms such as the Strategic Petroleum Reserve or co-

ordinated responses via the International Energy Agency. As a result, global supply chain

shocks produce a broader and more synchronized contraction across sectors, accompanied

by persistent inflationary pressures even in categories traditionally seen as insulated. This

highlights the structural vulnerability of globally integrated production systems and the need

for differentiated macroeconomic policy responses.

4 Global Supply Chain Shocks and The COVID Era

The causes of the pandemic-era inflation have sparked intense debate in the literature, with

competing explanations emphasizing either demand- or supply-side factors. While global

supply chain shocks have been increasingly acknowledged as a contributing factor, all existing

analyses rely on sign-restricted or narrative sign-restricted SVARs to assess their contribution

to the pandemic-era inflation and economic recovery. In this section, I contribute to the

literature by providing a comprehensive analysis of the cumulative historical contribution

of global supply chain shocks to the rise of consumer prices and the recovery of industrial

production from January 2020 to December 2024, by leveraging the instrument and structural
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framework developed in Sections 2 and 3. In particular, I will answer two key questions:

how significantly global supply chain shocks contributed to post-pandemic inflation and how

these shocks influenced the recovery of economic activity.

4.1 Historical Decomposition

Given the econometric framework outlined in Section 3, if the structural impact vector h̃1

is identified, Hamilton (Forthcoming) shows that the value of the first structural shock at

date t, u1t, can be recovered from the vector of the reduced-form innovations εt as follows

u1t =
(
h̃′

1Ω
−1/ h̃′

1Ω
−1h̃1

)
εt . (11)

Using the identified structural shock, I can estimate the contribution of the series of global

supply chain shocks to the historical values of the variables included in the VAR model. The

structural moving average representation from equation (5) implies:

yt(u1) =
∞∑
h=0

Ψhh̃1u1t−h . (12)

Here, yt(u1) is referred to as historical decomposition, obtained as the infinite sum of the

impulse responses to the global supply chain shock u1t−h at each forecast horizon h, weighted

by the corresponding structural impulse response coefficients Ψhh̃1.

4.2 Post-Pandemic Inflation

Figure 7 shows the cumulative historical contribution of global supply chain shocks to con-

sumer prices from January 2020 to December 2024, measured in percentage deviations from

the January 2020 level. The figure reveals that global supply chain shocks were key drivers

of post-pandemic inflation, particularly during the first half of the sample period.

Beginning in the second half of 2020, severe disruptions at major hubs, such as the
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ports of Los Angeles and Long Beach (handling a combined 8.6 million FEUs annually),

emerged alongside chokepoint disruptions in the Red Sea and Gulf of Aden due to the Houthi

conflict. The delayed pass-through of these shocks triggered significant price increases in

early 2021. The impact intensified through 2021 and 2022, exacerbated by global supply

chain shocks associated with events such as the partial closure of China’s Yantian port in

Shenzhen (7 million FEUs annually, ranking 4th globally) from May to June 2021, and the

shutdown of the Meishan terminal at Ningbo-Zhoushan port (16.3 million FEUs annually,

3rd globally) in August 2021, disrupting 25% of its container cargo capacity. The March

2021 Suez Canal obstruction, blocking a chokepoint responsible for 12% of global trade,

further strained the system. In early 2022, stringent lockdown measures in Shenzhen and

Shanghai, which impacted Yantian and Shanghai ports (the world’s busiest, handling 21.8

million FEUs annually), and the Russian invasion of Ukraine, which disrupted Black Sea

trade, led to the peak contribution to consumer prices observed in early 2023. Although

the impact began to subside thereafter, new disruptions persisted into 2024, notably the

January suspension of Red Sea transit, which forced rerouting via the Cape of Good Hope

and prolonged inflationary pressures.

This trajectory highlights the critical role of global supply chain shocks in driving con-

sumer price inflation during this period. In 2021, they accounted for an average of 51% of the

surge in consumer prices, reflecting the scale of the unprecedented disruptions worldwide.

My findings confirm the primary role of global supply chain shocks in shaping the early post-

pandemic inflation dynamics found by Bai et al. (2024). The remaining variation could be

largely attributable to demand factors and the substantial fiscal deficit, as noted by Hazell

and Hobler (2024), Jordà and Nechio (2023), Giannone and Primiceri (2024), and Bergholt

et al. (2024). In 2022, the influence of global supply chain shocks diminished, explaining

approximately 32% of the consumer price increase on average. This aligns with findings

from Goda and Soltas (2022), Hobijn and Sahin (2022), and Lee, Park and Shin (2023), who

demonstrate that adverse shocks to productive capacity sustained elevated inflation levels
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from 2022. In the subsequent years, the contribution of global supply chain shocks to in-

flation moderated while remaining significant, at 30% in 2023 and 22% in 2024. Overall,

my findings suggest that global supply chain shocks had a more substantial and persistent

impact on consumer prices throughout the pandemic recovery than previously recognized.

Figure 7: Historical Decomposition of Consumer Prices

Notes: The figure illustrates the historical contribution of global supply chain shocks to the US
CPI, expressed as a percentage deviation from the pre-pandemic level (January 2020). The solid
orange line is the actual series, the solid black line is the point estimates, and the shaded areas are
68, 80 and 90 percent confidence bands, respectively.

4.3 Recovery of Industrial Production

Figure 8 shows the cumulative historical contribution of global supply chain shocks to in-

dustrial production for the period January 2020 - December 2024, measured in percentage

deviations from production level observed in January 2020. The figure highlights the sub-

stantial downward pressure these shocks exerted on the economic recovery. By November

2021, industrial production had returned to its pre-COVID level, but in a counterfactual

scenario with only global supply chain shocks, recovery would have been delayed until at

least May 2023.

From January 2020, following reports of the COVID-19 outbreak in China, major ship-

ping companies implemented extraordinary blank sailing omissions on key trade routes,
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notably on the Trans-Pacific and East-West corridors. By February 2020, severe disruptions

in Chinese ports, as reported by MSC, led to critical shortages of refrigerated container

plugs and prevented vessels from discharging at designated ports. These disruptions were

compounded by strict COVID-19 containment measures, such as port controls, labor restric-

tions, and travel bans, which led to significant delays in the shipment of intermediate goods

and sharply increased production costs.

Figure 8: Historical Decomposition of Industrial Production

Notes: The figures show the historical contribution of global supply chain shocks to the US Indus-
trial Production in percentage deviation from the pre-pandemic level (January 2020). The solid
orange line is the actual series, the solid black line is the point estimates, and the shaded areas are
68, 80 and 90 percent confidence bands, respectively.

In April 2020, global supply chain shocks caused a nearly 6% decline in industrial pro-

duction, contributing to 34% of the total decrease. Although Industrial production began to

recover in the second half of 2020, downward pressures from supply chain shocks intensified.

The contribution of supply chain shocks to the production shortfall peaked in November

2021 at -7.5%. Their effect gradually declined thereafter, with the negative contribution

dissipating by May 2023.

While most existing studies have emphasized the nominal and inflationary effects of

supply disruptions, my findings highlight their significant and persistent impact on real

economic activity.
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4.4 Summary

The historical decomposition analysis reveals that global supply chain shocks played a more

prominent role in the early phase of post-pandemic inflation than previously recognized. My

findings confirm the central importance of these shocks in shaping inflation dynamics in 2021,

consistent with the evidence presented by Bai et al. (2024). However, I do not dismiss the

role of demand-side forces. As highlighted by Hazell and Hobler (2024), Jordà and Nechio

(2023), Giannone and Primiceri (2024), and Bergholt et al. (2024), large-scale fiscal stimulus

and pent-up demand also contributed meaningfully to the inflationary surge. In particular,

beginning in the second half of 2021, other shocks increasingly became the dominant drivers

of the price level, consistent with the timing of the massive fiscal recovery plan.

When viewed alongside the dynamics of industrial production, these results suggest that

the fiscal response to the pandemic supported a faster recovery of real activity, advancing

the timeline of production returning to pre-pandemic levels by roughly 18 months relative to

a scenario with only global supply chain shocks. However, this recovery came at the cost of

higher inflation, underscoring the trade-off between supporting output and anchoring prices

during supply-side disturbances.

Finally, this analysis contributes a novel insight to the ongoing policy debate: while

much of the discussion on global supply chain shocks has centered on their inflationary

consequences (Tenreyro, 2021; Lane, 2022; Guerrieri et al., 2023), my findings show that

these shocks also have long-lasting contractionary effects on real activity. This persistence

highlights the importance of recognizing global supply chain disruptions not only as a source

of persistent inflation but also as a meaningful driver of output fluctuations over the business

cycle.
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5 Quantitative Importance

Forecast Error Variance Decomposition.— The preceding analysis has shown that global

supply chain shocks are not only a source of persistent inflation but also a meaningful driver

of output fluctuations over the business cycle. Building on this insight, I now turn to a

formal quantification of their contribution to macroeconomic volatility. Specifically, I assess

the average importance of global supply chain shocks in explaining forecast error variance

across key aggregate variables in the baseline model. This allows me to evaluate how much

of the business cycle is systematically accounted for by these shocks over different time

horizons.

Under the identification assumptions of Section 3, if the structural impact vector h̃1 is

identified, the variance of the shock is also identified as

d11 = h̃′
1Ω

−1h̃1 (13)

where Ω is the reduced-form variance-covariance matrix. Consequently, I compute the contri-

bution of the global supply chain shock to the h-step-ahead forecast error variance-covariance

matrix of yt as
h−1∑
s=0

Ψhh̃1d11h̃
′
1Ψ

′
h. (14)

The ratio of the diagonal elements of (14) to those of the diagonal elements of the overall

h-step-ahead forecast error variance-covariance matrix,
∑h−1

s=0 ΨhΩΨ′
h, provides the percent-

age of the h-step-ahead variances of yt accounted by the first structural shock.

Discussion.— Table 1 presents the results. The global supply chain shock accounts for the

vast majority of fluctuations in the global supply chain pressure index, explaining almost 80%

of its variance on impact and nearly 60% in the long run. In contrast, the shock contributes

minimally to oil price variability, with almost none of the short-term variation attributed
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Table 1: Forecast Error Variance Decomposition

US CPI WTI Oil Price US Ind. Prod. US Unemp. GSCPI

Horizon
0 0.00 0.04 0.16 0.01 0.79

[0.00, 0.10] [0.02, 0.19] [0.01, 0.40] [0.00, 0.11] [0.53, 0.97]
12 0.02 0.03 0.25 0.12 0.74

[0.00, 0.19] [0.00, 0.17] [0.05, 0.54] [0.01, 0.35] [0.48, 0.93]
24 0.12 0.03 0.24 0.10 0.66

[0.01, 0.39] [0.00, 0.18] [0.06, 0.53] [0.00, 0.36] [0.46, 0.84]
36 0.23 0.05 0.24 0.10 0.60

[0.07, 0.53] [0.00, 0.20] [0.06, 0.53] [0.00, 0.37] [0.41, 0.78]
48 0.29 0.06 0.24 0.10 0.59

[0.10, 0.60] [0.00, 0.22] [0.06, 0.52] [0.00, 0.38] [0.41, 0.77]
∞ 0.35 0.07 0.24 0.09 0.58

[0.12, 0.74] [0.00, 0.25] [0.08, 0.50] [0.00, 0.35] [0.40, 0.77]

Note: The table shows the proportion of the forecast error variance of the variables
in the baseline model explained by global supply chain shocks at horizons 0, 12, 24,
36, 48 months and asymptotically. The 90 percent confidence intervals are displayed
in brackets.

to global supply chain disruptions, confirming that oil prices are largely disconnected from

such shocks. The shock’s contribution to consumer price fluctuations is small in the first

year but grows over the long term, accounting for 35% of CPI variability in the long run.

Turning to real variables, the global supply chain shock plays a significant role in driving

real business cycle fluctuations. It explains a substantial portion of industrial production

variability, increasing from 16% on impact to almost 25% in the long run. The shock’s

contribution is modest for unemployment on impact, but becomes relevant after one year.

Compared to the estimates of Bai et al. (2024), my findings attribute a larger share of

long-run consumer price variability to global supply chain shocks, 35% versus their approx-

imately 25% for personal consumption expenditure prices, while indicating a more gradual

transmission on impact. More notably, my estimates imply a large role for global supply
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chain shocks in driving real activity. Bai et al. (2024) find a limited contribution to real GDP

variance, while my results for industrial production suggest nearly double the explanatory

power. Taken together with the impulse response and historical decomposition analysis,

these results confirm that global supply chain shocks are not only a source of persistent

inflationary pressures but also key contributors to business cycle fluctuations.

6 Sensitivity Analysis

In this section, I present a series of robustness checks to assess the stability of the main

results. Specifically, I examine the sensitivity of the estimates to alternative specifications of

the instrument by sequentially excluding individual categories of disruptions. I also revisit

the invertibility assumption and explore alternative empirical strategies for identifying global

supply chain shocks. Additional robustness checks related to control variables and lag length

are provided in the online Appendix A.

6.1 Testing the Role of Individual Disruption Categories

The instrument is constructed from price surcharges associated with distinct types of exoge-

nous supply-side disruptions: operational issues, armed conflict, labor strikes, and extreme

weather or natural disasters. A key robustness check involves assessing whether the results

are disproportionately driven by specific episodes or by particular types of disruptions.

Figure 9 displays the aggregate-level results obtained by sequentially excluding one cate-

gory of disruptions at a time (column by column) from the instrument. The findings remain

remarkably consistent with the baseline specification presented in Section 3, effectively rul-

ing out the possibility that the results are driven by any single category of disruptions.

Excluding the operational disruptions serves as the most stringent robustness check for two

reasons. First, events classified under this category are more prone to be contaminated

by other contemporaneous shocks compared to strikes, natural disasters, or conflict-related
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Figure 9: Robustness to Excluding Categories of Supply Chain Disruptions

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
Each column shows estimates excluding one category of surcharges (war, strike, climate, or op-
erational) from the instrument. The orange lines represent the baseline specification, while the
black lines represent the restricted estimates excluding the specified category. The solid lines rep-
resent the point estimates, and the shaded areas (and dotted lines) denote 68, 80, and 90 percent
confidence bands, respectively.
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disruptions. Second, operational disruptions account for nearly 53% of all individual dis-

ruptions in the sample, making them quantitatively dominant. The stability of results even

after their exclusion provides strong support for the robustness of the identification strategy.

Another key robustness check involves excluding all disruptions directly or indirectly re-

lated to the COVID-19 pandemic, given the exceptional nature of the COVID shock relative

to standard macroeconomic shocks. Of the 62 identified exogenous supply chain disruptions,

14 are congestion events driven by pandemic-induced labor shortages, logistics and opera-

tional difficulties, or the implementation of additional sanitary protocols; one corresponds

to a COVID-19 outbreak that led to the partial shutdown of the Ningbo port in China; and

one reflects a strike in Northern Europe stemming from deteriorated labor conditions due

to the pandemic. These 16 disruptions are excluded from the instrument to test whether

pandemic-specific events disproportionately influence the baseline results.

Figure 10: Robustness to Excluding COVID-Related Disruptions

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The orange lines represent the baseline specification, while the black lines represent the restricted
estimates excluding the COVID-related disruptions. The solid lines represent the point estimates,
and the shaded areas (and dotted lines) denote 68, 80, and 90 percent confidence bands, respectively.
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As shown in Figure 10, the baseline results remain robust to the exclusion of COVID-

related disruptions. The pass-through to consumer prices appears somewhat faster, while

the effects on unemployment are stronger and more persistent. The responses of industrial

production and the GSCPI remain virtually unchanged, and WTI oil price continues to

exhibit no statistically significant response.

6.2 Invertibility Assumption

The identification strategy relies on the highly restrictive assumption of invertibility, meaning

that the structural shocks at each time horizon lie within the linear span of current and

lagged values of the endogenous variables. Fortunately, Plagborg-Møller and Wolf (2022)

note that the invertibility assumption can be tested by assessing whether lagged values

of the instrument contain predictive information for the current value of the endogenous

variables beyond that provided by their own lags. I conduct a series of F-tests and find

that the coefficients of the lagged instruments are statistically indistinguishable from zero

across all endogenous variables in the baseline VAR model and for various lag lengths of the

instrument, thereby failing to reject the null hypothesis of invertibility. In addition, I perform

a joint test of the null hypothesis that all coefficients on past realizations of the instrument

are jointly zero, following the procedure in Hamilton (Forthcoming), and again fail to reject

the invertibility assumption (see online Appendix A). This finding is consistent with the

nature of the identified shock. Unlike news shocks, which Ramey (2016) and Nakamura and

Steinsson (2018) argue are a common source of invertibility violations, the global supply

chain shock does not present the foresight problem. Furthermore, by construction, the

GSCPI captures comprehensive information on global disruptions, reducing the likelihood

of omitted information that might otherwise compromise invertibility.

Given that the data do not reject invertibility, there is no need to rely on the internal

instrument approach proposed by Plagborg-Møller and Wolf (2022), which relaxes this as-

sumption by requiring the instrument to be orthogonal to structural shocks at all leads and
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lags. In addition, the internal instrument approach is infeasible in my context because it

requires the instrument to be observed over the full sample period in order to be ordered

first in the VAR. Since the FEU price surcharge series has a shorter time span than the other

VAR variables, I instead adopt the Proxy-SVAR framework, which flexibly accommodates

instruments with limited history by separating the identification and estimation samples.

6.3 Local Projection - Instrumental Variable

Beyond the standard relevance and exogeneity conditions and the invertibility assumption,

the consistency of structural impulse response functions also relies on the VAR model ad-

equately capturing the covariance structure of the data. In a VAR(p) model, long-run re-

sponses are extrapolated from the first p sample autocovariances, which may lead to biased

estimates if the lag length is misspecified (Montiel Olea et al., 2025). An alternative ap-

proach is to estimate dynamic causal effects using local projections, which are less sensitive

to model misspecification and do not impose a specific dynamic structure. However, the

local projection–instrumental variable (LP-IV) approach poses challenges in this setting due

to the short sample of the external instrument. Estimating a separate IV regression at

each horizon reduces the effective sample size, particularly at longer horizons, resulting in a

substantial loss of statistical power.

To address this, I implement a battery of LP-IV regressions à la Jordà (2005) using the

global supply chain shock identified from the Proxy-SVAR as the regressor of interest:

yt+h = Θh,1û1t +Πxt−1 + ηt+h . (15)

Here, yt+h denotes the vector of outcome variables at horizon h, û1t is the identified global

supply chain shock, and xt−1 is a vector of controls, including twelve lags of the outcome

variables. Using û1t instead of the FEU price surcharge series overcomes the power limitations

of the LP-IV framework, as it is available over the full sample starting in 1998.

41



Figure 11 compares the IRFs obtained from the Proxy-SVAR and LP-IV approaches. The

responses are remarkably similar across both short and long horizons, providing evidence that

the baseline VAR captures the underlying covariance structure of the data. As expected,

the local projections are more erratic, as no dynamic restrictions are imposed across impulse

horizons.

Figure 11: Proxy-SVAR vs. Local Projection Responses

Notes: Impulse responses to a global supply chain shock corresponding to a $1,340 price surcharge.
The orange lines represent the baseline Proxy-SVAR results, while the black lines represent the
LP-IV results. The solid lines represent the point estimates, and the shaded areas (and dotted
lines) denote 68, 80, and 90 percent confidence bands, respectively.

7 Conclusion

This paper presents a novel identification strategy to assess the impact of global supply

chain shocks on the macroeconomy. I identify 62 exogenous disruptions worldwide, derived

from a narrative analysis of almost 7,000 price and surcharge updates from the three largest

container shipping companies. These shocks have significant effects on the macroeconomy
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and act as cost-push factors, raising prices persistently and exerting long-lasting downward

pressure on economic activity.

I show that these shocks produce a broad-based contraction across all major production

sectors and trigger persistent increases in consumer prices across nearly all major CPI subcat-

egories. The magnitude of these effects varies systematically with each sector’s exposure to

the global supply chain, measured by the percentage of production inputs outsourced abroad.

I demonstrate that sectors with higher exposure experience sharper output contractions and

stronger price pass-through. Beyond the tradable goods sector, I find that global supply

chain shocks spill over into non-tradable services. Although the response of service activity

and employment is more modest and transitory, it highlights the wider macroeconomic reach

of the global supply chain shocks.

I show that global supply chain shocks were the dominant drivers of inflation in the early

stages of the post-pandemic period, accounting for an average of 51% of the increase in

consumer prices in 2021. This contribution diminished over time but remained significant in

2022 (32%), 2023 (30%), and 2024 (22%). I also find that these shocks imposed a substantial

drag on economic recovery. In a counterfactual scenario with only global supply chain shocks,

industrial production would have returned to pre-pandemic levels 18 months later than it

did. This highlights a trade-off: the fiscal stimulus of late 2021 accelerated the recovery

but at the cost of higher inflation. I further demonstrate that global supply chain shocks

are significant drivers of business cycle fluctuations, accounting for approximately 25% of

the long-run variance in industrial production and 35% of the variance in consumer prices,

thereby positioning them as key contributors to business cycle fluctuations.

I found that these results are robust across a wide range of empirical specifications, includ-

ing alternative identification schemes, identification assumptions, and different specifications

of the instrument. My identification strategy, centered on shipping company surcharges, of-

fers a credible way to isolate exogenous supply-side disruptions.
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